জ্যামিতি

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
Jump to navigation Jump to search

জ্যামিতি গণিতের একটি শাখা যেখানে আকার ও আকৃতি এবং এতদসম্পর্কিত বিভিন্ন আঙ্গিকের পারস্পরিক সম্পর্ক নিয়ে গবেষণা করা হয়। জ্যামিতিকে স্থান বা জগতের বিজ্ঞান হিসেবে গণ্য করা যায়। পাটীগণিতে যেমন গণনা সংক্রান্ত আমাদের বিভিন্ন অভিজ্ঞতা নিয়ে আলোচনা করা হয়, তেমনি জ্যামিতিতে স্থান বা জগৎ নিয়ে আমাদের অভিজ্ঞতার বর্ণনা ও ব্যাখ্যা দেয়া হয়। প্রাথমিক জ্যামিতিকে কাজে লাগিয়ে দ্বি-মাত্রিক বিভিন্ন আকারের ক্ষেত্রফলপরিসীমা এবং ত্রিমাত্রিক বস্তুসমূহের পৃষ্ঠতলের ক্ষেত্রফল ও আয়তন নির্ণয় করা সম্ভব।

এই অসংজ্ঞায়িত ধারণাগুলির মধ্যে সবচেয়ে পরিচিত হল বিন্দু, রেখাতলের ধারণা।

এই মৌলিক ধারণাগুলি আমাদের প্রাত্যহিক জীবনের অভিজ্ঞতা থেকে উদ্ভূত। একটি বস্তু কোথায়? - এই প্রশ্নের উত্তরে আমাদেরকে একটি নির্দিষ্ট, স্থির অবস্থানের কথা চিন্তা করতে হয়। "বিন্দু" পদটি দিয়ে আমাদের এই স্বজ্ঞাভিত্তিক (intuitive) স্থির, নির্দিষ্ট অবস্থানের ধারণাকেই নির্দেশ করা হয়। অনেক ভৌত বস্তুই বিন্দুর ধারণা নির্দশ করে। যেমন কোন ব্লক আকৃতির বস্তুর কোণা, পেন্সিলের ডগা, কিংবা কাগজের উপর ফুটকি। এই জিনিসগুলিকে বিন্দু নামক মানসিক, বিমূর্ত ধারণাটির বাস্তব, মূর্ত প্রতিরূপ বা মডেল হিসেবে গণ্য করা হয়। একইভাবে একটি টানটান সুতা, টেবিলের ধার, পতাকাবাহী দণ্ড, ইত্যাদি পরপর সাজানো অনেকগুলি বিন্দুকে নির্দেশ করে। যদি

বিশ্লেষণী জ্যামিতি[সম্পাদনা]

কিছু কিছু সাংখ্যিক ও বীজগাণিতিক সমীকরণ দিয়ে বিন্দু, রেখা এবং অন্যান্য জ্যামিতিক আকৃতি নির্দেশ করা যায়, এই উপলব্ধি থেকেই বিশ্লেষণী জ্যামিতির জন্ম। অক্ষ ও স্থানাঙ্ক ব্যবহার করে সমীকরণগুলির চিত্রলেখ অঙ্কনের মাধ্যমে বিন্দু, রেখা ও অন্যান্য আকৃতি নির্দেশ করা সম্ভব। যেমন, লম্বভাবে অবস্থিত দুইটি অক্ষ থেকে দূরত্ব নির্দেশ করে কোন একটি বিন্দুর অবস্থান চিহ্নিত করা সম্ভব। যদি কোন বিন্দু x-অক্ষ থেকে ৫ একক দূরে এবং y-অক্ষ থেকে ৭ একক দূরে অবস্থিত হয়, তবে এটির অবস্থান x = 7, y = 5, এই সমীকরণ দুইটি দিয়ে নির্দেশ করা সম্ভব। একইভাবে, একটি সরলরেখাকে সবসময় ax + by + c = 0 আকারের একটি সমীকরণ দিয়ে নির্দেশ করা যায়। বৃত্ত, উপবৃত্ত, কোণীয় ছেদ ও অন্যান্য আকৃতির জন্য আরও জটিল সমীকরণ আছে।

বিশ্লেষণী জ্যামিতিতে দুই ধরনের সমস্যা খুবই সাধারণ। প্রথম ধরনের সমস্যাতে কতগুলি বিন্দুর জ্যামিতিক বিবরণ দেয়া থাকে, এবং সেখান থেকে এই বিন্দুগুলিকে সিদ্ধ করে এমন বীজগাণিতিক সমীকরণ করতে হয়। দ্বিতীয় ধরনের সমস্যা এর বিপরীত: প্রদত্ত বীজগাণিতিক সমীকরণ থেকে এমন কোন বিন্দু সমাহার বের করতে হয় যেগুলি একটি জ্যামিতিক বিবৃতি মেনে চলে। উদাহরণস্বরূপ ৩ ব্যাসার্ধবিশিষ্ট একটি বৃত্ত যার কেন্দ্র x ও y অক্ষের ছেদবিন্দু তথা মূলবিন্দুতে অবস্থিত, সেটির সমস্ত বিন্দু x2 + y2 = 9 সমীকরণ মেনে চলবে। এই ধরনের সমীকরণ ব্যবহার করে জ্যামিতিক অন্যান্য সমস্যা যেমন কোন কোণ বা রেখাংশের সমদ্বিখণ্ডক বের করা, বা কোন রেখার নির্দিষ্ট বিন্দুতে লম্ব আঁকা, তিনটি প্রদত্ত অসমরেখ বিন্দুর মধ্য দিয়ে বৃত্ত আঁকা, ইত্যাদি সম্পাদন করা যায়।

একইভাবে তিনটি অক্ষ ব্যবহার করে ত্রিমাত্রিক জগতে বিন্দু, রেখা ও অন্যান্য চিত্র নির্দেশ করা সম্ভব। এক্ষেত্রে তৃতীয় অক্ষ বা z অক্ষটি পর দুইটি অক্ষের উপর লম্বভাবে অবস্থিত থাকে।

গণিতের উন্নয়নে বিশ্লেষণী জ্যামিতি মূল্যবান ভূমিকা রাখে। এটি সংখ্যার সম্পর্ক তথা বিশ্লেষণী গণিতের সাথে জ্যামিতি তথা স্থানিক সম্পর্কের যোগসূত্র স্থাপন করে। বিশ্লেষণী জ্যামিতির কৌশলগুলি সংখ্যা ও বীজগাণিতিক এক্সপ্রেশনের জ্যামিতিক উপস্থাপন সম্ভব করে। ফলে ক্যালকুলাস, ফাংশনের তত্ত্ব, ও উচ্চতর গণিতের অন্যান্য সমস্যা নতুন আলোকে দেখার সুযোগ হয়। বিশ্লেষণী জ্যামিতি ছাড়া অ-ইউক্লিডীয় জ্যামিতি ও তিনের অধিক মাত্রার জ্যামিতির আলোচনা সম্ভবপর হত না।

অন্তরক জ্যামিতি[সম্পাদনা]

জার্মান গণিতবিদ কার্ল ফ্রিড্‌রিশ গাউস ভূমি জরিপ ও প্রভূমিতি (geodesy) সংক্রান্ত ব্যাবহারিক সমস্যার সমাধান করতে গিয়ে অন্তরক জ্যামিতি শাখা শুরু করেন। এতে তিনি অন্তরক ক্যালকুলাস ব্যবহার করে বক্ররেখা ও বক্রতলসমূহের স্বকীয় বৈশিষ্ট্যগুলি চিহ্নিত করেন। উদাহরণস্বরূপ তিনি গাণিতিকভাবে দেখান যে একটি বেলনের স্বকীয় বক্রতা ও একটি সমতলের স্বকীয় বক্রতা একই, কেননা একটি ফাঁপা বেলনকে অক্ষ বরাবর কেটে চ্যাপ্টা করলে এটি একটি সমতলে পরিণত হয়, কিন্তু গোলকের ক্ষেত্রে রূপবিকার না করে এটি করা যায় না।

অ-ইউক্লিডীয় জ্যামিতি[সম্পাদনা]

ইউক্লিডের পঞ্চম স্বতঃসিদ্ধ বলে যে কোন প্রদত্ত রেখার বহিঃস্থ একটি বিন্দু দীয়ে ঐ রেখার সমান্তরাল কেবল একটি রেখা আঁকা সম্ভব এবং এই সমান্তরাল রেখা কখনোই প্রদত্ত রেখাটিকে স্পর্শ করবে না, অসীম পর্যন্ত সমান্তরালে চলতে থাকবে। ১৯শ শতকের শুরুর দিকে জার্মান গণীতবিদ কার্ল ফ্রিড্‌রিশ গাউস, রুশ গণিতবিদ নিকলাই ইভানভিচ লোবাচেভ্‌স্কি এবং হাঙ্গেরীয় গণিতবিদ ইয়ানোশ বলিয়ই একে অপরের থেকে স্বাধীনভাবে দেখান যে এমন একটি সামঞ্জস্যপূর্ণ জ্যামিতিক ব্যবস্থা গঠন করা সম্ভব যেখানে ইউক্লিডের এই পঞ্চম স্বতঃসিদ্ধটিকে অন্য একটি স্বতঃসিদ্ধ দিয়ে প্রতিস্থাপন করা সম্ভব যেটি বলে যে কোন প্রদত্ত রেখার বহিঃস্থ কোন বিন্দু দিয়ে রেখাটির সমান্তরাল অসীম সংখ্যক রেখা আঁকা সম্ভব। পরবর্তীতে ১৮৬০ সালে জার্মান গণিতবিদ গেয়র্গ ফ্রিড্‌রিশ বের্নহার্ট রিমান দেখান যে আরেকটি জ্যামিতিক ব্যবস্থা গঠন করা সম্ভব যেখানে এরকম কোন সমান্তরাল রেখাই আঁকা সম্ভব নয়।

উপরের দুই ধরনের অ-ইউক্লিডীয় জ্যামিতির বিস্তারিত বিবরণ বেশ জটিল, তবে দুটিকেই সহজ মডেলের মাধ্যমে দেখানো সম্ভব। বলিয়াই-লোবাচেভ্‌স্কি জ্যামিতিতে (যাকে অনেক সময় অধিবৃত্তীয় জ্যামিতিও বলা হয়) এমন একটি জ্যামিতিক ব্যবস্থা আলোচনা করা হয় যার সমস্ত বিন্দু একটি বৃত্তের মধ্যে সীমাবদ্ধ এবং যার সমস্ত সম্ভাব্য রেখা বৃত্তটির জ্যা। যেহেতু সংজ্ঞা অনুসারে দুইটি সমান্তরাল রেখাকে যতই প্রসারিত করা হোক না কেন, এর কখনোই মিলবে না, এবং অধিবৃত্তীয় জ্যামিতিতে যেহেতু রেখাগুলি বৃত্তের ধারের বাইরে প্রসারিত করা সম্ভব নয়, সে কারণে যেকোন রেখার সমান্তরাল অসীম সংখ্যক রেখা রেখাটির বহিঃস্থ বিন্দু দিয়ে আঁকা সম্ভব।

একইভাবে রিমানীয় বা উপবৃত্তীয় অ-ইউক্লিডীয় জ্যামিতিতে জ্যামিতিক "বিশ্ব" বা "জগত" একটি বিশাল গোলকের পৃষ্ঠ যেখানে সব সরলরেখা একেকটি বৃহত্তম বৃত্ত। এই জ্যামিতিতে এক জোড়া সমান্তরাল রেখা আঁকা অসম্ভব।

অপেক্ষাকৃত কম দূরত্বের জন্য, অর্থাৎ আমাদের প্রাত্যহিক অভিজ্ঞতার ক্ষেত্রে, ইউক্লিডীয় ও অ-ইউক্লিডীয় জ্যামিতির মধ্যে কোন পার্থক্য নেই। তবে মহাজাগতিক দূরত্ব এবং আধুনিক পদার্থবিজ্ঞানের সমস্যা যেমন আপেক্ষিকতার সমস্যাগুলি সমাধানের জন্য ইউক্লিডীয় জ্যামিতির চেয়ে অ-ইউক্লিডীয় জ্যামিতি পর্যবেক্ষণকৃত ঘটনাবলির আরও সুক্ষ্ম ও সঠিক ব্যাখ্যা দিতে পারে। উদাহরণস্বরূপ, আলবার্ট আইনস্টাইনের আপেক্ষিকতা তত্ত্ব বক্রতলের একটি রিমানীয় জ্যামিতির উপর ভিত্তি করে প্রস্তাবিত।

অভিক্ষেপী জ্যামিতি[সম্পাদনা]

বিভিন্ন জ্যামিতিক বস্তু ও এদের অভিক্ষেপের মধ্যে সম্পর্ক আলোচনা করতে গিয়ে ১৭শ শতকে জ্যামিতির আরেকটি শাখা শুরু হয়। উদাহরণ হিসেবে বলা যায়, কনিকগুলিকে অভিক্ষেপের মাধ্যমে একটি থেকে আরেকটিতে রূপান্তরিত করা যায়। কোন ফ্ল্যাশলাইটকে দেয়ালের সাথে লম্বভাবে ধরলে বৃত্তাকার আলোকপট্টি ফেলে, কিন্তু কোণ করে হেলিয়ে ধরলে দেয়ালে উপবৃত্তাকার আলোকপট্টির সৃষ্টি হয়।

অভিক্ষেপী রূপান্তরের পরেও জ্যামিতিক চিত্রের কিছু কিছু ধর্ম অপরিবর্তনশীল থাকে। এই অপরিবর্তনশীল ধর্মগুলি কী, তাই অভিক্ষেপী জ্যামিতির বিভিন্ন উপপাদ্যের আলোচ্য।

চার বা তার বেশি মাত্রার জ্যামিতি[সম্পাদনা]

অভিক্ষেপী ও বিশ্লেষণী জ্যামিতির উন্নয়ন গণিতবিদদেরকে তিনের বেশি মাত্রার জগতের জ্যামিতি অধ্যয়নে উৎসাহী করে। অনেকে মনে করেন এ ধরনের বহুমাত্রিক জগৎ নিয়ে চিন্তা করা খুব কঠিন। কিন্তু আসলে গণিতবিদেরা এগুলি আরও সহজ উপায়ে কল্পনা করেন।

ভৌত বিশ্বের যেকোন বিন্দুর অবস্থান তিনটি অক্ষের (সাধারণত x, y, ও z-অক্ষ নামে পরিচিত) সাপেক্ষে নির্দেশ করা সম্ভব। ভৌত বিশ্বের স্থান বিষয়ক জ্যামিতি তাই ত্রিমাত্রিক।

এই ত্রিমাত্রিক জগতের প্রতিটি বিন্দুকে কল্পনায় যদি একটি গোলক দিয়ে প্রতিস্থাপিত করে নেওয়া হয়, তবে এটি একটি চতুর্মাত্রিক জগতে পরিণত হয়। কেননা তখন প্রতিটি বিন্দু-গোলকের অবস্থান নির্দেশ করার জন্য চারটি নির্দেশক লাগবে: গোলকের কেন্দ্র নির্দেশকারী x, y, ও z-স্থানাংক এবং গোলকটির ব্যাসার্ধের দৈর্ঘ্য।

একইভাবে দ্বিমাত্রিক জগৎ দিয়ে একটি ত্রিমাত্রিক জগতকে উপস্থাপন করা সম্ভব। এক্ষেত্রে দ্বিমাত্রিক জগতের প্রতিটি বিন্দুকে একটি বৃত্ত দিয়ে প্রতিস্থাপিত করা হয়, এবং ত্রিমাত্রিক জগতের তিনটি মাত্রা হল বৃত্তের কেন্দ্র নির্দেশক দুইটি স্থানাংক এবং এর ব্যাসার্ধ।

তিনের বেশি মাত্রার জগৎ নিয়ে জ্যামিতিক ধারণাগুলি ভৌত বিজ্ঞানে, বিশেষ করে আপেক্ষিকতা তত্ত্বের উন্নয়নে গুরুত্বপূর্ণ ভূমিকা রাখে।

চার বা তার বেশি মাত্রার জগতের সুষম জ্যামিতিক বস্তুগুলির অধ্যয়নে বিশ্লেষণী জ্যামিতির পদ্ধতিও প্রয়োগ করা হয়। এই জ্যামিতিকে বলে সাংগঠনিক জ্যামিতি (structural geometry)। সাংগঠনিক জ্যামিতির একটি সরল উদাহরণ হল শুন্য, এক, দুই, তিন, চার বা তার বেশি মাত্রার জগতের সরলতম জ্যামিতিক বস্তুটির সংজ্ঞা বের করা, যাকে সবচেয়ে কম সংখ্যক শীর্ষ, ধার ও পৃষ্ঠ দিয়ে সংজ্ঞায়িত করা যায়। এদের মধ্যে শুন্য, এক, দুই ও তিন মাত্রার জন্য বস্তুগুলি হচ্ছে আমাদের পরিচিত বিন্দু, রেখা, ত্রিভুজ ও চতুস্তলক। চার মাত্রার জগতের জন্য দেখানো যায় যে সরলতম জ্যামিতিক বস্তুটির পাঁচটি শীর্ষ, ১০টি ধার এবং ১০টি পৃষ্ঠ আছে।

জ্যামিতিশাস্ত্রের ইতিহাস[সম্পাদনা]

প্রাচীন জ্যামিতিবিদেরা ভূমিক্ষেত্রসমূহের ক্ষেত্রফল ও ঘরবাড়ি নির্মাণের সময় সঠিকভাবে সমকোণ নির্ণয়ের সমস্যা নিয়ে চিন্তা করতেন। প্রাচীন মিশরে প্রতি বছর নীল নদের বন্যায় জমিসমূহের সীমানা নষ্ট হয়ে যেত এবং এই সীমানাগুলি পুনরুদ্ধারের জন্য জ্যামিতির সাহায্য নেয়া হত। এই ধরনের অভিজ্ঞতাভিত্তিক জ্যামিতি প্রাচীন মিশর, সুমের এবং ব্যাবিলনিয়াতে বিকাশ লাভ করে এবং পরবর্তীতে গ্রিকদের হাতে পরিশীলিত ও নিয়মাবদ্ধ হয়।

প্রাচীন গ্রিসের জ্যামিতি[সম্পাদনা]

ইতিহাসের সর্বপ্রথম গুরুত্বপূর্ণ জ্যামিতিবিদ হিসেবে যার নাম পাওয়া যায়, তিনি হলেন মিলেতুসের থালেস। থালেস ৬০০ খ্রিস্টপূর্বাব্দের দিকে গ্রিসে বাস করতেন। থালেসকে অনেকগুলি সরল কিন্তু গুরুত্বপূর্ণ উপপাদ্যের জনক হিসেবে গণ্য করা হয়; এদের মধ্যে অন্যতম হল অর্ধবৃত্তস্থিত কোণ যে সমকোণ, তার প্রমাণ।

থালেসই প্রথম দেখান যে কতগুলি সার্বজনীনভাবে স্বীকৃত বিবৃতি তথা স্বতঃসিদ্ধ থেকে যৌক্তিকভাবে অগ্রসর হয়ে একটি জ্যামিতিক সত্য প্রতিষ্ঠা করা যায়। এই স্বতঃসিদ্ধগুলিকে থালেস ও তার পরবর্তী গ্রিক জ্যামিতিবিদেরা স্ব-প্রমাণিত সত্য বলে মনে করতেন। তবে আধুনিক গাণিতিক চিন্তাধারায় এগুলিকে কতগুলি সুবিধাজনক কিন্তু যথেচ্ছ অনুমান বলে গণ্য করা হয়। থালেসের এই আরোহী পদ্ধতির ধারণা সমস্ত জ্যামিতিক গবেষণায়, এমনকি সমস্ত গাণিতিক গবেষণায় বর্তমান কাল পর্যন্ত আধিপত্য বিস্তার করেছে।

থালেসের এক বিখ্যাত ছাত্র ছিলেন পিথাগোরাস। পিথাগোরাস ও তাঁর সহযোগীরা ত্রিভুজ, বৃত্ত, অনুপাত, ও কিছু কিছু ঘনবস্তুর জন্য অনেক নতুন নতুন উপপাদ্য প্রমাণ করেন। পিথাগোরাসের সবচেয়ে বিখ্যাত উপপাদ্যটি বর্তমানে তাঁর নামে নামান্বিত এবং বলে যে, সমকোণী ত্রিভুজের অতিভুজের বর্গ বাকি বাহুদ্বয়ের বর্গের যোগফলের সমষ্টি।

গ্রিকদের প্রস্তাবিত ও স্বীক্রৃত স্বতঃসিদ্ধগুলি ছিল এই জাতীয়: “দুইটি বিন্দুর মধ্যবর্তী ক্ষুদ্রতম পথ সরলরেখা।” এই ধরনের স্বতঃসিদ্ধ থেকে বিন্দু, রেখা, কোণ, বক্ররেখা ও তলসমূহ সম্পর্কে বিভিন্ন উপপাদ্যে যৌক্তিকভাবে উপনীত হওয়া যেত। তবে খ্রিস্টপূর্ব ৩য় শতকে ইউক্লিডই সর্বপ্রথম বিভিন্ন ছড়িয়ে থাকা উপপাদ্য ও স্বতঃসিদ্ধগুলি একটি সমন্বিত ব্যবস্থার অধীনে এনে তাঁর Elements গ্রন্থতে প্রকাশ করেন। ১৩টি পার্চমেন্ট রোল বা পুস্তকে লেখা এই গ্রন্থ মানবমনের চরম উৎকর্ষের একটি নিদর্শন। প্রকাশের প্রায় ১০০০ বছর গণিতবিদের এগুলোতে সামান্যই কোন গুরুত্বপূর্ণ উন্নয়ন যোগ করতে পেরেছিলেন। বিংশ শতাব্দীতেও জ্যামিতির প্রাথমিক পাঠ্য হিসেবে ইউক্লিডের বইটি অবিকৃতভাবে ব্যবহার করা হত। ইউক্লিডের কাজের গুরুত্ব তাঁর ফলাফলে নয়, বরং তাঁর পদ্ধতিতে। তাঁর প্রমাণিত বেশির ভাগ উপপাদ্যই বহু বছর আগেই জানা ছিল, কিন্তু তাঁর আগে কেউই দেখাতে পারেনি যে এগুলি সব ঘনিষ্ঠ সম্পর্কযুক্ত এবং সামান্য কিছু প্রাথমিক স্বতদঃসিদ্ধ থেকে এগুলিতে উপনীত হওয়া সম্ভব। ইউক্লিড এভাবে তাঁর কাজের মাধ্যমে আরোহী পদ্ধতির গুরুত্ব প্রতিষ্ঠিত করেন।

গ্রিকরা কেবল রুলার ও কাঁটা-কম্পাস ব্যবহার করে জ্যামিতিক চিত্র আঁকার সমস্যা (সমপাদ্য) উদ্ভাবন করেছিল। সরল সমস্যাগুলির মধ্যে আছে কোন প্রদত্ত রেখাংশের দ্বিগুণ দৈর্ঘ্যের রেখাংশ আঁকা, কোন একটি কোণকে সমদ্বিখণ্ডিত করা, ইত্যাদি। গ্রিকদের এ সংক্রান্ত তিনটি বিখ্যাত সমস্যা বহু বছর ধরে গণিতবিদেরা সমাধান করতে পারেন নি: প্রদত্ত ঘনকের দ্বিগুণ আয়তনের ঘনক আঁকা, প্রদত্ত বৃত্তের ক্ষেত্রফলের সমান ক্ষেত্রফলের বর্গ আঁকা, এবং একটি কোণকে সমত্রিখণ্ডিত করা। এগুলির কোনটিই রুলার ও কাঁটাকম্পাসের সাহায্য নিয়ে আঁকা সম্ভব নয়। এদের মধ্যে বৃত্তের বর্গীকরণের অসম্ভাব্যতা ১৮৮২ সালের আগে প্রমাণিত হয়নি।

গ্রিক গণিতবিদ পের্গার আপোল্লনিয়ুস কনিক ছেদগুলি নিয়ে গবেষণা করেন এবং এগুলির অনেক মৌলিক ধর্ম খ্রিস্টপূর্ব ৩০০ অব্দেই আবিষ্কার করেন। কনিকগুলি ভৌত বিজ্ঞানের অনেক ক্ষেত্রে কাজে আসে। যেমন যেকোন খ-বস্তুর কক্ষপথ, যেমন সূর্যকে কেন্দ্র করে ঘুরছে এমন গ্রহ বা ধূমকেতুর গতিপথ সবসময় কোন এক ধরনের কনিকের উপর অবস্থান করে। ক্রৃত্রিম উপগ্রহগুলিও পৃথিবীকে উপবৃত্তাকার পথে প্রদক্ষিণ করে।

মহান গ্রিক বিজ্ঞানী আর্কিমিদিস খ্রিস্টপূর্ব ৩য় শতকে জ্যামিতিতে অনেকগুলি অবদান রাখেন। তিনি অনেকগুলি বক্ররেখাবদ্ধ আকৃতির ক্ষেত্রফল এবং বক্রতলাবদ্ধ ঘনবস্তুর, যেমন সিলিন্ডারের পৃষ্ঠের ক্ষেত্রফল ও আয়তন নির্ণয় করার সূত্র বের করেন। এছাড়াও পাই-এর আসন্ন মান নির্ণয়ের একটি পদ্ধতি বের করেন এবং বলেন যে এই মান ৩ ১০/৭০ ও ৩ ১০/৭১ এর মধ্যবর্তী।

মধ্যযুগে জ্যামিতি[সম্পাদনা]

১৫শতকে জ্যামিতিচর্চা

৫ম শতাব্দীতে রোমান সাম্রাজ্যের পতনের পর ১৫শ শতক পর্যন্ত ইউরোপে জ্যামিতির তেমন উন্নতিসাধন হয়নি।এসময় ইউরোপ অন্ধকার যুগে প্রবেশ করে এবং উত্তর আফ্রিকা ও মধ্যপ্রাচ্যের মুসলমানেরা এবং ভারতের হিন্দুরা জ্যামিতির বেশির ভাগ উন্নতি সাধন করেন।গ্রিক গণিতের বেশির ভাগই ছড়িয়ে যায় বা নষ্ট হয়ে যায়। তবে এদের কিছু কিছু, যেমন ইউক্লিডের Elements মুসলমান ও হিন্দুরা অনুবাদ করে সংরক্ষণ করেন ও অধ্যয়ন করেন। ৬ষ্ঠ শতকের ভারতীয় গণিতবিদ আর্যভট্ট সমদ্বিবাহু ত্রিভুজের ক্ষেত্রফলের সূত্র পুনরাবিষ্কার করেন। এছাড়াও তিনি পাই-এর অত্যন্ত সঠিক মানের একটি সূত্র দান করেন; তিনি পাই-এর মান ধরেন ৬২৮৩২/২০০০০, বা ৩.১৪১৬, যা দশমিকের পর চার ঘর পর্যন্ত পাইয়ের সঠিক মান। ৪র্থ ও ১৩শ শতকের মধ্যবর্তী সময়ে জ্যামিতির জ্ঞান কাজে লাগিয়ে ত্রিকোণমিতি শাস্ত্রের উন্নতি সাধন করা হয়।

১২শ ও ১৩শ শতকে ইউক্লিডের এলিমেন্টস গ্রিক ও আরবি থেকে লাতিনে ও আধুনিক ইউরোপীয় ভাষায় অনুবাদ করা হয় এবং ধর্মীয় শিক্ষালয়ে জ্যামিতি শিক্ষা যোগ করা হয়।

১৭শ ও ১৮শ শতকের জ্যামিতি[সম্পাদনা]

ফরাসি দার্শনিক ও গণিতবিদ রনে দেকার্ত জ্যামিতিকে সামনের দিকে এগিয়ে দেন। ১৬৩৭ সালে তাঁর প্রভাবশালী রচনা Discourse on Method প্রকাশিত হয়, যেখানে তিনি স্থানাংক ব্যবস্থার সাহায্যে জ্যামিতিক আকৃতি প্রকাশের পদ্ধতি উপস্থাপন করেন। তাঁর কাজ জ্যামিতি ও বীজগণিতের মধ্যে যোগসূত্র স্থাপন করে। এই যোগসূত্রই বিশ্লেষণী জ্যামিতি এবং আধুনিক জ্যামিতির ভিত্তি।

১৭শ শতকের জ্যামিতির আরেকটি গুরুত্বপূর্ণ ঘটনা ছিল অভিক্ষেপী জ্যামিতির উদ্ভাবন। অভিক্ষেপী জ্যামিতিতে কোন জ্যামিতিক বস্তুর এক তল থেকে আরেক তলে অভিক্ষেপ ফেললে এর ধর্মের কী পরিবর্তন ঘটে তা নিয়ে গবেষণা করা হয়। জেরার দ্যজার্গ নামের এক ফরাসি প্রকৌশলী perspective নিয়ে গবেষণা করতে গিয়ে অভিক্ষেপী জ্যামিতি উদ্ভাবন করেন। ১৮শ শতকে গাসপার মোঁজ নামের ফরাসি এক গণিতের অধ্যাপক বিবরণমূলক জ্যামিতি নামে জ্যামিতির আরেকটি শাখা উদ্ভাবন করেন। বিবরণমূলক জ্যামিতিতে দ্বি-মাত্রিক চিত্রের সাহায্যে ত্রিমাত্রিক বস্তুসমূহকে কীভাবে ত্রুটিহীনভাবে উপস্থাপন করা যায় এবং এর সাহায্যে কীভাবে ত্রিমাত্রিক জ্যামিতির নানা সমস্যা সমাধান করা যায়, তার আলোচনা করা হয়। প্রকৌশল ও স্থাপত্যের অঙ্কনের ভিত্তি হল এই বিবরণমূলক জ্যামিতি।

আধুনিক জ্যামিতি[সম্পাদনা]

ইউক্লিডীয় জ্যামিতির কাঠামোর ভেতরেই বিশ্লেষণী, অভিক্ষেপী ও বিবরণমূলক জ্যামিতির আবর্ভাব ঘটে। বহু শতাব্দী ধরে গণিতবিদেরা বিশ্বাস করতেন যে অনন্য সমান্তরাল রেখা সংক্রান্ত ইউক্লিডের পঞ্চম স্বতঃসিদ্ধটি বাকী চারটি স্বতঃসিদ্ধ থেকে প্রমাণ করা যাবে, কিন্তু এই প্রমাণ বের করার সমস্ত চেষ্টা ব্যর্থ হয়। কিন্তু ১৯শ শতকে এসে নতুন নতুন জ্যামিতিক ব্যবস্থা উদ্ভাবন করা হয় যেগুলিতে ইউক্লিডের পঞ্চম স্বতঃসিদ্ধটিকে অন্য কিছু দিয়ে প্রতিস্থাপন করা হয়। এইসব নতুন ধরনের অ-ইউক্লিডীয় জ্যামিতির উদ্ভাবনে নেতৃত্ব দেন কার্ল ফ্রিড্‌রিশ গাউস, ইয়ানোশ বলিয়ই, নিকলাই লবাচেভ্‌‌স্কি এবং গেয়র্গ ফ্রিড্‌রিশ বের্নহার্ট রিমান

১৮৭২ সালে জার্মান গণিতবিদ ফেলিক্স ক্লাইন গণিতের একটি অপেক্ষাকৃত নবীন শাখা গ্রুপ তত্ত্ব ব্যবহার করে তাঁর সময়কার সমস্ত জ্যামিতিক ব্যবস্থাগুলিকে এক ব্যবস্থার অধীনে আনেন। ১৮৯৯ সালে আরেকজন জার্মান গণিতবিদ ডাভিড হিলবের্ট তাঁর Foundations of Geometry বইটি প্রকাশ করেন, যাতে ইউক্লিডীয় জ্যামিতির জন্য স্বতঃসিদ্ধসমূহের একটি সুশৃঙ্খল ব্যবস্থা প্রদান করা হয় এবং এটি গণিতের অন্যান্য শাখায় গভীর প্রভাব ফেলে।

১৯১৬ সালে আইনস্টাইনের আপেক্ষিকতা তত্ত্ব অনুসারে দেখা যায় অনেক ভৌত ঘটনা জ্যামিতিক মূলনীতি থেকে উপনীত হওয়া সম্ভব। এই তত্ত্বের সাফল্য অন্তরক জ্যামিতি ও টপোগণিতের গবেষণায় জোয়ার আনে।

১৯শ শতকের ব্রিটিশ গণিতবিদ আর্থার কেলি চার বা তারও বেশি মাত্রার জ্যামিতি প্রবর্তন করেন। ১৯শ শতকে ফ্র্যাক্টাল মাত্রার আলোচনা শুরু হয়। ১৯৭০-এর দশকে ফ্র্যাক্টালের ধারণা কাজে লাগিয়ে জ্যামিতির নতুন শাখা ফ্র্যাক্টাল জ্যামিতির উদ্ভব হয়।