ডোমেইন (গণিত)

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে

সাধারণ ভাবে যেকোন বস্তু বা বিষয়ের সুসংহত এবং সন্নিবদ্ধ সংগ্রহ কে একত্রিত ভাবে যেই নাম বা পরিসর দ্বারা বুঝানো হয় তাকে ডোমেইন বলে। আর গণিতের ভাষায় ঐ সংগ্রহ পরিসীমাকে রেন্জ বলে।[তথ্যসূত্র প্রয়োজন]

গাণিতিক ব্যখ্যায় ডোমেইন[সম্পাদনা]

গণিতের ভাষায়, ডোমেইন হলো একটি ফাংশানকে সংজ্ঞায়িত করতে পারে এমন সদস্যের সেট। অন্যভাবে বলা যায়, কোন একটি নির্দিষ্ট শর্তকে পূরণ করতে পারে এমন উপাদানের সম্মিলিত সংগ্রহই একটি ফাংশন এর ডোমেইন।

উদাহরণ[সম্পাদনা]

কার্টেসিয়ান সমতলে এক্স অক্ষকে ডোমেইন বলা হয়।

ফাংশনের ডোমেইন[সম্পাদনা]

যদি X সেট হতে Y সেটে f একটি ফাংশন হয়, তবে তাকে f:X→Y লিখে প্রকাশ করা হয়। X সেটকে f:X→Y ফাংশনের ডোমেন (domain) এবং Y সেটকে এর কোডোমেন (codomain) বলা হয়।

রেঞ্জ f={y:y=f(x)যেখানেx element X}

       ={f(x):x element X}

এখানে রেঞ্জ f কোডোমেন Y এর উপসেট।

আংশিক ফাংশনের ডোমেইন[সম্পাদনা]

বিশেষায়িত সংজ্ঞা[সম্পাদনা]

বাস্তব এবং কাল্পনিক আক্ষিক বিশ্লেষণ[সম্পাদনা]

তথ্য সূত্র[সম্পাদনা]