ডায়োফ্যান্টাইন সমীকরণ

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে

ডায়োফ্যান্টাইন সমীকরণ (ইংরেজি: Diophantine equation) হল একধরনের অনির্দিষ্ট বহুপদী সমীকরণ যার চলরাশি কেবলমাত্র পূর্ণ সংখ্যা হতে পারে। ডায়োফ্যান্টাইন সমস্যায় সমীকরণের সংখ্যা অজানা চলকের চেয়ে কম থাকে। ডায়োফ্যান্টাইন শব্দটি প্রাচীন গ্রিক গণিতবিদ ডায়োফ্যান্টাস-এর নাম থেকে এসেছে। ডায়োফ্যান্টাস কর্তৃক সূচিত ডায়োফ্যান্টাইন সমস্যার গাণিতিক পর্যালোচনা এখন ডায়োফ্যান্টাইন বিশ্লেষণ নামে পরিচিত। রৈখিক ডায়োফ্যান্টাইন সমীকরণে, শূন্য অথবা এক মাত্রার দুইটি একপদীর সমষ্টি থাকে।

ডায়োফ্যান্টাইন সমীকরণের উদাহরণ[সম্পাদনা]

ax + by = 1: এটি বেজু-র অভেদ এবং একটি রৈখিক ডায়োফ্যান্টাইন সমীকরণ।
xn + yn = zn: n = 2 এর জন্য অগুনতি সমাধান (x,y,z) রয়েছে, যারা পিথাগোরীয় ত্রয়ী নামে পরিচিত। n এর উচ্চতর মানের জন্য, ফের্মার শেষ উপপাদ্য অনুসারে, কোনো ধনাত্মক পূর্ণ সংখ্যা বিশিষ্ট সমাধান পাওয়া সম্ভব নয়।
x2 - ny2 = 1: পেল সমীকরণ
\sum_{i=0}^n{a_i x^i y^{n-i}} = c, যেখানে, n \geq 3 এবং c \not= 0: এরা হল থ্যু সমীকরণ এবং সাধারণত সমাধানযোগ্য।

রৈখিক ডায়োফন্টাইন সমীকরণ[সম্পাদনা]

ax + my = b ......................(1)
আকারের সমীকরণকে রৈখিক ডায়োফ্যান্টাইন সমীকরণ বলে। এখানে a,b,m∈ℕ. এই সমীকরণের পূর্ণ সংখ্যায় সমাধান থাকবে যদি এবং কেবল যদি
d|b হয়। যেখানে, d=gcd(a,m)
এবং এক্ষেত্রে সকল সমাধানের একটি সাধারণ রূপ হল,
x = x_0+ \dfrac{m}{d}n ,
y = y_0- \dfrac{a}{d}n
এবং x_0 , y_0 হল যেকোনো দুটি সংখ্যা যারা সমীকরণ (1) কে সিদ্ধ করে; যেখানে n∈I।
আবার, x=x_0 , ax+my_0=b ডায়োফ্যান্টাইন সমীকরণকে সিদ্ধ করে এবং (a,m)=1 হয়, তবে যেকোনো পূর্ণসংখ্যা
y_0 এর জন্য এটি নীচের অনুসমতাকেও সিদ্ধ করে,
ax \equiv b\pmod m,\,, (a,m)=1