খসড়া:গ্লিয়া

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
গ্লিয়া
গ্লিয়াল কোষ: এপেনডাইমাল কোষ (হালকা গোলাপী), অ্যাস্ট্রোসাইট (সবুজ), মাইকারোগ্লিয়াল কোষ (গাঢ় লাল), ও অলিগোডেনড্রোসাইট (হালকা নীল)
বিস্তারিত
পূর্বভ্রূণনিউরোএক্টোডার্ম (ম্যাক্রোগ্লিয়ার জন্য), ও রক্তকোষ উৎপাদনকারী স্টেম কোষ (মাইক্রোগ্লিয়ার জন্য)
তন্ত্রস্নায়ুতন্ত্র
মাইক্রো শারীরস্থান পরিভাষা

গ্লিয়া হলো কেন্দ্রীয় স্নায়ুতন্ত্রের ( মস্তিষ্ক এবং মেরুদণ্ড ) এবং পেরিফেরাল স্নায়ুতন্ত্রের নন - নিউরন অ্যাল কোষ। একে গ্লিয়াল সেল (একবচন গ্লিওসাইট ) বা নিউরোগ্লিয়াও বলা হয়।এরা হোমিওস্ট্যাসিস বজায় রাখে , পেরিফেরাল নার্ভাস সিস্টেমে মাইলিন তৈরি করে এবং নিউরনের জন্য সমর্থন ও সুরক্ষা প্রদান করে ।  কেন্দ্রীয় স্নায়ুতন্ত্রে, গ্লিয়াল কোষের মধ্যে রয়েছে অলিগোডেনড্রোসাইট, অ্যাস্ট্রোসাইট, এপেনডাইমাল কোষ এবং মাইক্রোগ্লিয়াল কোষ এবং পেরিফেরাল স্নায়ুতন্ত্রের গ্লিয়াল কোষগুলির মধ্যে রয়েছে স্বোয়ান কোষ এবং স্যাটেলাইট গ্লিয়াল কোষ

এদের চারটি প্রধান কাজ রয়েছে:

  • নিউরনকে ঘিরে রাখা এবং তাদের জায়গায় রাখা;
  • নিউরোনগুলিতে পুষ্টি এবং অক্সিজেন সরবরাহ করা;
  • একটি নিউরন থেকে অন্য নিউরন নিরোধক করা;
  • প্যাথোজেন ধ্বংস এবং মৃত নিউরন অপসারণ. তারা নিউরোট্রান্সমিশন এবং সিনাপটিক সংযোগে ভূমিকা পালন করে,  এবং শ্বাস- প্রশ্বাসের মতো শারীরবৃত্তীয় প্রক্রিয়াগুলিতেও । যদিও গ্লিয়া ১০:১ অনুপাতের দ্বারা নিউরনের সংখ্যাকে ছাড়িয়ে গেছে বলে মনে করা হয়েছিল, সাম্প্রতিক গবেষণাগুলি নতুন পদ্ধতি ব্যবহার করে এবং ঐতিহাসিক পরিমাণগত প্রমাণের পুনর্মূল্যায়নে বিভিন্ন মস্তিষ্কের টিস্যুগুলির মধ্যে উল্লেখযোগ্য পার্থক্য সহ সামগ্রিক অনুপাত ১:১ এর কম হওয়ার পরামর্শ দেয়।

[১] [২][৩] [৪][৫][৬] [৭][৮].[৯] "[১০]

ধরন[সম্পাদনা]

Neuroglia of the brain shown by Golgi's method
Astrocytes can be identified in culture because, unlike other mature glia, they express glial fibrillary acidic protein (GFAP)
Glial cells in a rat brain stained with an antibody against GFAP
Different types of neuroglia

Macroglia[সম্পাদনা]

Derived from ectodermal tissue.

Location Name Description
CNS Astrocytes

The most abundant type of macroglial cell in the CNS,[১১] astrocytes (also called astroglia) have numerous projections that link neurons to their blood supply while forming the blood-brain barrier. They regulate the external chemical environment of neurons by removing excess potassium ions, and recycling neurotransmitters released during synaptic transmission. Astrocytes may regulate vasoconstriction and vasodilation by producing substances such as arachidonic acid, whose metabolites are vasoactive.

Astrocytes signal each other using ATP. The gap junctions (also known as electrical synapses) between astrocytes allow the messenger molecule IP3 to diffuse from one astrocyte to another. IP3 activates calcium channels on cellular organelles, releasing calcium into the cytoplasm. This calcium may stimulate the production of more IP3 and cause release of ATP through channels in the membrane made of pannexins. The net effect is a calcium wave that propagates from cell to cell. Extracellular release of ATP, and consequent activation of purinergic receptors on other astrocytes, may also mediate calcium waves in some cases.

In general, there are two types of astrocytes, protoplasmic and fibrous, similar in function but distinct in morphology and distribution. Protoplasmic astrocytes have short, thick, highly branched processes and are typically found in gray matter. Fibrous astrocytes have long, thin, less branched processes and are more commonly found in white matter.

It has recently been shown that astrocyte activity is linked to blood flow in the brain, and that this is what is actually being measured in fMRI.[১২] They also have been involved in neuronal circuits playing an inhibitory role after sensing changes in extracellular calcium.[১৩]

CNS Oligodendrocytes

Oligodendrocytes are cells that coat axons in the central nervous system (CNS) with their cell membrane, forming a specialized membrane differentiation called myelin, producing the myelin sheath. The myelin sheath provides insulation to the axon that allows electrical signals to propagate more efficiently.[১৪]

CNS Ependymal cells

Ependymal cells, also named ependymocytes, line the spinal cord and the ventricular system of the brain. These cells are involved in the creation and secretion of cerebrospinal fluid (CSF) and beat their cilia to help circulate the CSF and make up the blood-CSF barrier. They are also thought to act as neural stem cells.[১৫]

CNS Radial glia

Radial glia cells arise from neuroepithelial cells after the onset of neurogenesis. Their differentiation abilities are more restricted than those of neuroepithelial cells. In the developing nervous system, radial glia function both as neuronal progenitors and as a scaffold upon which newborn neurons migrate. In the mature brain, the cerebellum and retina retain characteristic radial glial cells. In the cerebellum, these are Bergmann glia, which regulate synaptic plasticity. In the retina, the radial Müller cell is the glial cell that spans the thickness of the retina and, in addition to astroglial cells,[১৬] participates in a bidirectional communication with neurons.[১৭]

PNS Schwann cells

Similar in function to oligodendrocytes, Schwann cells provide myelination to axons in the peripheral nervous system (PNS). They also have phagocytotic activity and clear cellular debris that allows for regrowth of PNS neurons.[১৮]

PNS Satellite cells

Satellite glial cells are small cells that surround neurons in sensory, sympathetic, and parasympathetic ganglia.[১৯] These cells help regulate the external chemical environment. Like astrocytes, they are interconnected by gap junctions and respond to ATP by elevating the intracellular concentration of calcium ions. They are highly sensitive to injury and inflammation and appear to contribute to pathological states, such as chronic pain.[২০]

PNS Enteric glial cells

Are found in the intrinsic ganglia of the digestive system. Glia cells are thought to have many roles in the enteric system, some related to homeostasis and muscular digestive processes.[২১]

Microglia[সম্পাদনা]

Microglia are specialized macrophages capable of phagocytosis that protect neurons of the central nervous system.[২২] They are derived from the earliest wave of mononuclear cells that originate in yolk sac blood islands early in development, and colonize the brain shortly after the neural precursors begin to differentiate.[২৩]

These cells are found in all regions of the brain and spinal cord. Microglial cells are small relative to macroglial cells, with changing shapes and oblong nuclei. They are mobile within the brain and multiply when the brain is damaged. In the healthy central nervous system, microglia processes constantly sample all aspects of their environment (neurons, macroglia and blood vessels). In a healthy brain, microglia direct the immune response to brain damage and play an important role in the inflammation that accompanies the damage. Many diseases and disorders are associated with deficient microglia, such as Alzheimer's disease, Parkinson's disease, and ALS.

Other[সম্পাদনা]

Pituicytes from the posterior pituitary are glial cells with characteristics in common to astrocytes.[২৪] Tanycytes in the median eminence of the hypothalamus are a type of ependymal cell that descend from radial glia and line the base of the third ventricle.[২৫] Drosophila melanogaster, the fruit fly, contains numerous glial types that are functionally similar to mammalian glia but are nonetheless classified differently.[২৬]

Total number[সম্পাদনা]

In general, neuroglial cells are smaller than neurons. There are approximately 85 billion glia cells in the human brain,[৮] about the same number as neurons.[৮] Glial cells make up about half the total volume of the brain and spinal cord.[২৭] The glia to neuron-ratio varies from one part of the brain to another. The glia to neuron-ratio in the cerebral cortex is 3.72 (60.84 billion glia (72%); 16.34 billion neurons), while that of the cerebellum is only 0.23 (16.04 billion glia; 69.03 billion neurons). The ratio in the cerebral cortex gray matter is 1.48, with 3.76 for the gray and white matter combined.[২৭] The ratio of the basal ganglia, diencephalon and brainstem combined is 11.35.[২৭]

The total number of glia cells in the human brain is distributed into the different types with oligodendrocytes being the most frequent (45–75%), followed by astrocytes (19–40%) and microglia (about 10% or less).[৮]

Development[সম্পাদনা]

23-week fetal brain culture astrocyte

Most glia are derived from ectodermal tissue of the developing embryo, in particular the neural tube and crest. The exception is microglia, which are derived from hemopoietic stem cells. In the adult, microglia are largely a self-renewing population and are distinct from macrophages and monocytes, which infiltrate an injured and diseased CNS.

In the central nervous system, glia develop from the ventricular zone of the neural tube. These glia include the oligodendrocytes, ependymal cells, and astrocytes. In the peripheral nervous system, glia derive from the neural crest. These PNS glia include Schwann cells in nerves and satellite glial cells in ganglia.

Capacity to divide[সম্পাদনা]

Glia retains the ability to undergo cell divisions in adulthood, whereas most neurons cannot. The view is based on the general inability of the mature nervous system to replace neurons after an injury, such as a stroke or trauma, where very often there is a substantial proliferation of glia, or gliosis, near or at the site of damage. However, detailed studies have found no evidence that 'mature' glia, such as astrocytes or oligodendrocytes, retain mitotic capacity. Only the resident oligodendrocyte precursor cells seem to keep this ability once the nervous system matures.

Glial cells are known to be capable of mitosis. By contrast, scientific understanding of whether neurons are permanently post-mitotic,[২৮] or capable of mitosis,[২৯][৩০][৩১] is still developing. In the past, glia had been considered[কার মতে?] to lack certain features of neurons. For example, glial cells were not believed to have chemical synapses or to release transmitters. They were considered to be the passive bystanders of neural transmission. However, recent studies have shown this to not be entirely true.[৩২]

History[সম্পাদনা]

Although glial cells and neurons were probably first observed at the same time in the early 19th century, unlike neurons whose morphological and physiological properties were directly observable for the first investigators of the nervous system, glial cells had been considered to be merely “glue” that held neurons together until the mid-20th century.[৩৩]

Glia were first described in 1856 by the pathologist Rudolf Virchow in a comment to his 1846 publication on connective tissue. A more detailed description of glial cells was provided in the 1858 book 'Cellular Pathology' by the same author.[৩৪]

When markers for different types of cells were analyzed, Albert Einstein's brain was discovered to contain significantly more glia than normal brains in the left angular gyrus, an area thought to be responsible for mathematical processing and language.[৩৫] However, out of the total of 28 statistical comparisons between Einstein's brain and the control brains, finding one statistically significant result is not surprising and the claim that Einstein's brain is different, is not scientific (c.f. Multiple comparisons problem).[৩৬]

Not only does the ratio of glia to neurons increase through evolution, but so does the size of the glia. Astroglial cells in human brains have a volume 27 times greater than in mouse brains.[৩৭]

These important scientific findings may begin to shift the neuron-specific perspective into a more holistic view of the brain which encompasses the glial cells as well. For the majority of the twentieth century, scientists had disregarded glial cells as mere physical scaffolds for neurons. Recent publications have proposed that the number of glial cells in the brain is correlated with the intelligence of a species.[৩৮]


তথ্যসূত্র[সম্পাদনা]

  1. Fields, R. Douglas; Araque, Alfonso; Johansen-Berg, Heidi; Lim, Soo-Siang; Lynch, Gary; Nave, Klaus-Armin; Nedergaard, Maiken; Perez, Ray; Sejnowski, Terrence; Wake, Hiroaki (অক্টোবর ২০১৪)। "Glial Biology in Learning and Cognition"The Neuroscientist20 (5): 426–431। আইএসএসএন 1073-8584ডিওআই:10.1177/1073858413504465পিএমআইডি 24122821পিএমসি 4161624অবাধে প্রবেশযোগ্য 
  2. Jessen KR, Mirsky R (আগস্ট ১৯৮০)। "Glial cells in the enteric nervous system contain glial fibrillary acidic protein"। Nature286 (5774): 736–7। এসটুসিআইডি 4247900ডিওআই:10.1038/286736a0পিএমআইডি 6997753বিবকোড:1980Natur.286..736J 
  3. Wolosker H, Dumin E, Balan L, Foltyn VN (জুলাই ২০০৮)। "D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration"। The FEBS Journal275 (14): 3514–26। এসটুসিআইডি 25735605ডিওআই:10.1111/j.1742-4658.2008.06515.xপিএমআইডি 18564180 
  4. Swaminathan, Nikhil (জানু–ফেব্রু ২০১১)। "Glia—the other brain cells"Discover 
  5. Gourine AV, Kasymov V, Marina N, ও অন্যান্য (জুলাই ২০১০)। "Astrocytes control breathing through pH-dependent release of ATP"Science329 (5991): 571–5। ডিওআই:10.1126/science.1190721পিএমআইডি 20647426পিএমসি 3160742অবাধে প্রবেশযোগ্যবিবকোড:2010Sci...329..571G 
  6. Beltrán-Castillo S, Olivares MJ, Contreras RA, Zúñiga G, Llona I, von Bernhardi R, ও অন্যান্য (২০১৭)। "D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels."Nat Commun8 (1): 838। ডিওআই:10.1038/s41467-017-00960-3পিএমআইডি 29018191পিএমসি 5635109অবাধে প্রবেশযোগ্যবিবকোড:2017NatCo...8..838B 
  7. von Bartheld, Christopher S. (নভেম্বর ২০১৮)। "Myths and truths about the cellular composition of the human brain: A review of influential concepts"Journal of Chemical Neuroanatomy93: 2–15। আইএসএসএন 1873-6300ডিওআই:10.1016/j.jchemneu.2017.08.004পিএমআইডি 28873338পিএমসি 5834348অবাধে প্রবেশযোগ্য 
  8. von Bartheld, Christopher S.; Bahney, Jami; Herculano-Houzel, Suzana (২০১৬-১২-১৫)। "The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting"The Journal of Comparative Neurology524 (18): 3865–3895। আইএসএসএন 1096-9861ডিওআই:10.1002/cne.24040পিএমআইডি 27187682পিএমসি 5063692অবাধে প্রবেশযোগ্য 
  9. "Classic Papers"Network Glia। Max Delbrueck Center für Molekulare Medizin (MDC) Berlin-Buch। সংগ্রহের তারিখ ১৪ নভেম্বর ২০১৫ 
  10. γλοία, γλία. Liddell, Henry George; Scott, Robert; পারসিয়াস প্রজেক্টে এ গ্রিক–ইংলিশ লেক্সিকন.
  11. "The Root of Thought: What do Glial Cells Do?" 
  12. Swaminathan N (২০০৮)। "Brain-scan mystery solved"। Scientific American Mind। Oct–Nov (5): 7। ডিওআই:10.1038/scientificamericanmind1008-7b 
  13. Torres A (২০১২)। "Extracellular Ca2+ Acts as a Mediator of Communication from Neurons to Glia"Science Signaling। 5 Jan 24 (208): 208। ডিওআই:10.1126/scisignal.2002160পিএমআইডি 22275221পিএমসি 3548660অবাধে প্রবেশযোগ্য 
  14. Baumann N, Pham-Dinh D (এপ্রিল ২০০১)। "Biology of oligodendrocyte and myelin in the mammalian central nervous system"Physiological Reviews81 (2): 871–927। ডিওআই:10.1152/physrev.2001.81.2.871পিএমআইডি 11274346 
  15. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (জানুয়ারি ১৯৯৯)। "Identification of a neural stem cell in the adult mammalian central nervous system"। Cell96 (1): 25–34। এসটুসিআইডি 9658786ডিওআই:10.1016/S0092-8674(00)80956-3অবাধে প্রবেশযোগ্যপিএমআইডি 9989494 
  16. Newman EA (অক্টোবর ২০০৩)। "New roles for astrocytes: regulation of synaptic transmission"। Trends in Neurosciences26 (10): 536–42। এসটুসিআইডি 14105472ডিওআই:10.1016/S0166-2236(03)00237-6পিএমআইডি 14522146 
  17. Campbell K, Götz M (মে ২০০২)। "Radial glia: multi-purpose cells for vertebrate brain development"। Trends in Neurosciences25 (5): 235–8। এসটুসিআইডি 41880731ডিওআই:10.1016/s0166-2236(02)02156-2পিএমআইডি 11972958 
  18. Jessen KR, Mirsky R (সেপ্টেম্বর ২০০৫)। "The origin and development of glial cells in peripheral nerves"। Nature Reviews. Neuroscience6 (9): 671–82। এসটুসিআইডি 7540462ডিওআই:10.1038/nrn1746পিএমআইডি 16136171 
  19. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Rev. 48:457–476, 2005
  20. Ohara PT, Vit JP, Bhargava A, Jasmin L (ডিসেম্বর ২০০৮)। "Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo"Journal of Neurophysiology100 (6): 3064–73। ডিওআই:10.1152/jn.90722.2008পিএমআইডি 18715894পিএমসি 2604845অবাধে প্রবেশযোগ্য 
  21. Bassotti G, Villanacci V, Antonelli E, Morelli A, Salerni B (জুলাই ২০০৭)। "Enteric glial cells: new players in gastrointestinal motility?"। Laboratory Investigation87 (7): 628–32। ডিওআই:10.1038/labinvest.3700564অবাধে প্রবেশযোগ্যপিএমআইডি 17483847 
  22. Brodal, 2010: p. 19
  23. Never-resting microglia: physiological roles in the healthy brain and pathological implications A Sierra, ME Tremblay, H Wake – 2015 – books.google.com
  24. Miyata, S; Furuya, K; Nakai, S; Bun, H; Kiyohara, T (এপ্রিল ১৯৯৯)। "Morphological plasticity and rearrangement of cytoskeletons in pituicytes cultured from adult rat neurohypophysis."। Neuroscience Research33 (4): 299–306। এসটুসিআইডি 24687965ডিওআই:10.1016/s0168-0102(99)00021-8পিএমআইডি 10401983 
  25. Rodríguez, EM; Blázquez, JL; Pastor, FE; Peláez, B; Peña, P; Peruzzo, B; Amat, P (২০০৫)। "Hypothalamic tanycytes: a key component of brain-endocrine interaction." (পিডিএফ)International Review of Cytology247: 89–164। hdl:10366/17544অবাধে প্রবেশযোগ্যডিওআই:10.1016/s0074-7696(05)47003-5পিএমআইডি 16344112 
  26. Freeman, Marc R. (২০১৫-০২-২৬)। "DrosophilaCentral Nervous System Glia"Cold Spring Harbor Perspectives in Biology7 (11): a020552। আইএসএসএন 1943-0264ডিওআই:10.1101/cshperspect.a020552অবাধে প্রবেশযোগ্যপিএমআইডি 25722465পিএমসি 4632667অবাধে প্রবেশযোগ্য 
  27. Azevedo FA, Carvalho LR, Grinberg LT, ও অন্যান্য (এপ্রিল ২০০৯)। "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain"। The Journal of Comparative Neurology513 (5): 532–41। এসটুসিআইডি 5200449ডিওআই:10.1002/cne.21974পিএমআইডি 19226510 
  28. Herrup K, Yang Y (মে ২০০৭)। "Cell cycle regulation in the postmitotic neuron: oxymoron or new biology?"। Nature Reviews. Neuroscience8 (5): 368–78। এসটুসিআইডি 12908713ডিওআই:10.1038/nrn2124পিএমআইডি 17453017 
  29. Goldman SA, Nottebohm F (এপ্রিল ১৯৮৩)। "Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain"Proceedings of the National Academy of Sciences of the United States of America80 (8): 2390–4। ডিওআই:10.1073/pnas.80.8.2390অবাধে প্রবেশযোগ্যপিএমআইডি 6572982পিএমসি 393826অবাধে প্রবেশযোগ্যবিবকোড:1983PNAS...80.2390G 
  30. Eriksson PS, Perfilieva E, Björk-Eriksson T, ও অন্যান্য (নভেম্বর ১৯৯৮)। "Neurogenesis in the adult human hippocampus"। Nature Medicine4 (11): 1313–7। ডিওআই:10.1038/3305অবাধে প্রবেশযোগ্যপিএমআইডি 9809557 
  31. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (এপ্রিল ১৯৯৯)। "Hippocampal neurogenesis in adult Old World primates"Proceedings of the National Academy of Sciences of the United States of America96 (9): 5263–7। ডিওআই:10.1073/pnas.96.9.5263অবাধে প্রবেশযোগ্যপিএমআইডি 10220454পিএমসি 21852অবাধে প্রবেশযোগ্যবিবকোড:1999PNAS...96.5263G 
  32. The Other Brain, by R. Douglas Fields, Ph. D. Simon & Schuster, 2009[পৃষ্ঠা নম্বর প্রয়োজন]
  33. Fan, Xue; Agid, Yves (আগস্ট ২০১৮)। "At the Origin of the History of Glia"। Neuroscience385: 255–271। এসটুসিআইডি 48360939ডিওআই:10.1016/j.neuroscience.2018.05.050পিএমআইডি 29890289 
  34. Kettenmann H, Verkhratsky A (ডিসেম্বর ২০০৮)। "Neuroglia: the 150 years after"Trends in Neurosciences31 (12): 653–9। এসটুসিআইডি 7135630ডিওআই:10.1016/j.tins.2008.09.003পিএমআইডি 18945498 
  35. Diamond MC, Scheibel AB, Murphy GM Jr, Harvey T,"On the Brain of a Scientist: Albert Einstein","Experimental Neurology 1985;198–204", Retrieved February 18, 2017
  36. Hines, Terence (২০১৪-০৭-০১)। "Neuromythology of Einstein's brain"। Brain and Cognition (ইংরেজি ভাষায়)। 88: 21–25। আইএসএসএন 0278-2626এসটুসিআইডি 43431697ডিওআই:10.1016/j.bandc.2014.04.004পিএমআইডি 24836969 
  37. Koob, Andrew (২০০৯)। The Root of Thought। FT Press। পৃষ্ঠা 186। আইএসবিএন 978-0-13-715171-4 
  38. Aw, B.L। "5 Reasons why Glial Cells Were So Critical to Human Intelligence."Scientific Brains। সংগ্রহের তারিখ ৫ জানুয়ারি ২০১৫