সমবাহু ত্রিভুজ
জ্যামিতিতে সমবাহু ত্রিভুজ হলো এমন ত্রিভুজ যার প্রতিটি বাহু সমান দৈর্ঘ্যের।[১] এছাড়াও সমবাহু ত্রিভুজের প্রতিটি কোণ পরস্পর সমান। এটি তিন বাহু বিশিষ্ট একটি সুষম বহুভুজ, তাই এটিকে সুষম ত্রিভুজও বলা হয়।
সমবাহু ত্রিভুজ | |
---|---|
![]() | |
প্রকার | সুষম বহুভুজ |
প্রান্ত এবং ছেদচিহ্ন | 3 |
Schläfli symbol | {3} |
কক্সিটার ডায়াগ্রাম | ![]() ![]() ![]() |
প্রতিসাম্য দল | D3 |
ক্ষেত্রফল | |
অভ্যন্তরীণ কোণ (degrees) | 60° |
প্রধান বৈশিষ্ট্যসমুহ[সম্পাদনা]
সমবাহু ত্রিভুজের প্রতিটি বাহুকে a ধরে পিথাগোরাসের উপপাদ্য অনুসারে বলতে পারি:
- ক্ষেত্রফল,
- পরিসীমা,
- পরিবৃত্তের ব্যাসার্ধ,
- অন্তরলিখিত বৃত্তের ব্যাসার্ধ অথবা
- ত্রিভুজটির কেন্দ্র হলো পরিবৃত্ত ও অন্তবৃত্তের কেন্দ্র।
- যেকোন শীর্ষ থেকে অভিলম্বের দৈর্ঘ্য
জ্যামিতিক নির্মাণ[সম্পাদনা]
পেন্সিল এবং কম্পাসের সাহায্যে সহজেই সমবাহু ত্রিভুজ আঁকা যায়। কারণ 3 হলো একটি ফেরমাটের মৌলিক সংখ্যা। প্রথমে একটি সরলরেখা আঁকতে হবে। রেখার এক প্রান্তকে কেন্দ্র করে ঐ রেখার দৈর্ঘ্যের সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। একইভাবে অন্য প্রান্তেও একটি বৃত্ত আঁকি। এর রেখার দুইটি প্রান্তবিন্দুর সঙ্গে যে বিন্দুতে বৃত্ত দুটি ছেদ করেছে সেই বিন্দুটি যোগ করি।
অন্যভাবেও সমবাহু ত্রিভুজ আঁকা যায়। প্রথমে r ব্যাসার্ধবিশিষ্ট একটি বৃত্ত আঁকি। এরপর ঐ বৃত্তের পরিধির যেকোন বিন্দুকে কেন্দ্র করে একই ব্যাসার্ধ নিয়ে আরেকটি বৃত্ত আঁকি। বৃত্ত দুইটি যে দুটি বিন্দুতে ছেদ করেছে সেটি এবং বিপরীত বিন্দুটি যোগ করি।
ক্ষেত্রফলের সূত্রের প্রমাণ[সম্পাদনা]
প্রতিটি বাহু a হলে সমবাহু ত্রিভুজের ক্ষেত্রফল । পিথাগোরাসের উপপাদ্য এবং ত্রিকোণমিতির সাহায্যে এটি সহজেই প্রমাণ করা যায়।
পিথাগোরাসের উপপাদ্য ব্যবহার করে[সম্পাদনা]
যেকোন ত্রিভুজের ক্ষেত্রফল হলো ভূমি, এবং উচ্চতা, এর গুণফলের অর্ধেক।
সমবাহু ত্রিভুজের যেকোন শীর্ষ থেকে বিপরীত বাহুর উপর লম্ব আঁকা হলে দুটি সমকোণী ত্রিভুজ উৎপন্ন হবে। যেকোন সমকোণী ত্রিভুজের ভূমি হলো a এর অর্ধেক এবং পিথাগোরাসের উপপাদ্য অনুসারে পাই
তাহলে
ক্ষেত্রফলের সুত্রটিতে এর মান বসিয়ে পাই
হিরনের সূত্র দিয়ে[সম্পাদনা]
যেকোন ত্রিভুজের অর্ধ-পরিসীমা হলে হিরনের সূত্র অনুসারে ত্রিভুজটির ক্ষেত্রফল
যেহেতু, সমবাহু ত্রিভুজের ক্ষেত্রে তাই সমবাহু ত্রিভুজের অর্ধপরিসীমা, তাহলে সমবাহু ত্রিভুজের ক্ষেত্রফল
বা,
সুতরাং,
ত্রিকোণমিতির সাহায্যে[সম্পাদনা]
ত্রিকোণমিতির সূত্র অনুসারে, ত্রিভুজের যেকোন দুইটি বাহু ও এবং এদের মধ্যবর্তী কোণ হলে ক্ষেত্রফল
সমবাহু ত্রিভুজের প্রতিটি কোণ 60° তাই
এর মান সুতরাং
কারণ সমবাহু ত্রিভুজের প্রতিটি বাহু সমান।
আরও দেখুন[সম্পাদনা]
তথ্যসূত্র[সম্পাদনা]
- ↑ "সমবাহু ত্রিভুজের সংজ্ঞা, ক্ষেত্রফল ও পরিসীমা নির্ণয়"। পাঠগৃহ। সংগ্রহের তারিখ ২০২১-১২-১৯।
- ↑ উদ্ধৃতি ত্রুটি:
<ref>
ট্যাগ বৈধ নয়;:0
নামের সূত্রটির জন্য কোন লেখা প্রদান করা হয়নি