মহাকর্ষ

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
চিরায়ত বলবিদ্যা

নিউটনের দ্বিতীয় সূত্র
চিরায়ত বলবিদ্যার ইতিহাস
সৌরমণ্ডলের গ্রহগুলি সূর্যকে কেন্দ্র করে পাক খায় মাধ্যাকর্ষণ বলের প্রভাবে (ছবি স্কেল অনুসারে না)

মহাকর্ষ একটি প্রাকৃতিক ঘটনা যা দ্বারা সকল বস্তু একে অপরকে আকর্ষণ করে। প্রকৃতির চারটি মৌলিক বলের একটি হল মহাকর্ষ [১]। মহাকর্ষের কারণেই পৃথিবীসহ অন্যান্য গ্রহগুলি সূর্যের চারিদিকে ঘূর্ণায়মান। স্যার আইজাক নিউটন ১৬৮৭ খ্রিস্টাব্দে তাঁর Philosophia Naturalis Principia Mathmatica গ্রন্থে বিষয়ে ধারণা প্রদান করেন৷

মহাকর্ষের বিশেষ উদাহরণ হলো মাধ্যাকর্ষণ যার কারণে ভূপৃষ্ঠের উপরস্থ সকল বস্তু ভূকেন্দ্রের দিকে আকৃষ্ট হয়। মাধ্যাকর্ষণের প্রভাবেই ওপরিস্থত বা ঝুলন্ত বস্তু মুক্ত হলে ভূপৃষ্ঠে পতিত হয়। মাধ্যাকর্ষণের প্রভাবে ভরসম্পন্ন বস্তুসমূহে ওজন অনুভূত হয়। একটি বস্তুর ভর যত বেশী হয়, মাধ্যাকর্ষণের প্রভাবে তার ওজনও তত বেশী হয়।

বৈজ্ঞানিক নিউটন সর্বপ্রথম মহাকর্ষ বলের গাণিতিক ব্যাখ্যা প্রদান করেন। এটি নিউটনের মহাকর্ষ সূত্র নামে পরিচিত। আধুনিক পদার্থবিদ্যায় মহাকর্ষ সবচেয়ে সঠিকভাবে আপেক্ষিকতার সাধারণ তত্ত্ব (আইনস্টাইন দ্বারা প্রস্তাবিত) দ্বারা বর্ণনা করা হয়। আইনস্টাইনের মতে স্থান-কালের বক্রতার কারনেই মহাকর্ষ বল সৃষ্টি হয়।

নিউটনের তত্ত্ব[সম্পাদনা]

স্যার আইজাক নিউটন ১৬৮৭ খ্রিস্টাব্দে প্রকাশিত তাঁর Philosophia Naturalis Principia Mathmatica বইটিতে মহাকর্ষ বিষয়ে ধারণা দেন ৷ তাঁর সূত্রটি ছিল:

মহাবিশ্বের প্রতিটি বস্তুকণা একে অপরকে নিজের কেন্দ্রের দিকে আকর্ষণ করে এবং এ আকর্ষণ বলের মান বস্তুকণাদ্বয়ের ভরের গুণফলের সমানুপাতিক ও এদের মধ্যবর্তী দূরত্বের বর্গের ব্যাস্তানুপাতিক এবং এ আকর্ষণ তাদের কেন্দ্র সংযোজক সরলরেখা বরাবর ক্রিয়া করে ৷

এ সূত্রানুসারে যদি দুটি বস্তুর ভর যথাক্রমে m1 ও m2 এবং মধ্যবর্তী দূরত্ব d হয় তবে

যেখানে G হল সার্বজনীন মহাকর্ষীয় ধ্রুবক।

মহাকর্ষীয় ক্ষেত্র[সম্পাদনা]

কোন বস্তুর আশে পাশে যে অঞ্চল ব্যাপী এর মহাকর্ষীয় প্রভাব বজায় থাকে,অর্থাৎ কোন বস্তু রাখা হলে সেটি আকর্ষণ বল লাভ করে, তাকে মহাকর্ষীয় ক্ষেত্র বলে।

মহাকর্ষীয় ক্ষেত্র প্রাবল্য বা মহাকর্ষীয় তীব্রতা[সম্পাদনা]

মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে একক ভরের কোনো বস্তু স্থাপন করলে এর উপর যে বল প্রযুক্ত হয় তাকে ঐ ক্ষেত্রের দরুণ ঐ বিন্দুর আকর্ষণ বল বা মহাকর্ষীয় প্রাবল্য বলে। মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে m ভরের বস্তুর উপর F বল ক্রিয়া করলে ঐ বিন্দুতে মহাকর্ষীয় প্রাবল্য হবে,

এই সমীকরন থেকে দেখা যায় , m এর মান বৃদ্বি পেলে E হ্রাস পায় ৷ মহাকর্ষীয় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্য বিভিন্ন হবে। বস্তুর ভর বেশি হলে প্রাবল্য বাড়বে, দূরত্ব বেশি হলে প্রাবল্য কমবে। এটি একটি ভেক্টর রাশি । এর মান ও দিক আছে ৷ কোনো বিন্দুতে একাধিক প্রাবল্য ক্রিয়াশীল হলে ভেক্টর যোগের পদ্বতি অনুযায়ী ঐ বিন্দুতে লব্দি-প্রাবল্য গণনা করা যায় ৷ প্রাবল্যের অভিমুখই মহাকর্ষীয় ক্ষূত্রের অভিমুখ নির্দেশ করে ৷ অনেক ক্ষেত্রের প্রাবল্য বোঝাতে শুধু মহাকর্ষীয় ক্ষেত্র লেখা হয় ৷[২] ৷ এসআই পদ্ধতিতে প্রাবল্যের একক নিউটন পার কিলোগ্রাম ৷

মহাকর্ষীয় বিভব[সম্পাদনা]

অসীম দুরত্ব থেকে একক ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে মহাকর্ষীয় বল দ্বারা সম্পন্ন কাজের পরিমাণকে ঐ বিন্দুর মহাকর্ষীয় বিভব বলে।

অসীম দুরত্ব থেকে m ভরের কোন বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোন বিন্দুতে আনতে যদি W পরিমাণ কাজ সম্পন্ন হয়,তবে ঐ বিন্দুর মহাকর্ষীয় বিভব V হবে

মহাকর্ষীয় বিভবের একক[সম্পাদনা]

মহাকর্ষীয় বিভব একটি স্কেলার রাশি,এর কোন দিক নেই। এর একক হলো জুল পার কিলোগ্রাম

আরো দেখুন[সম্পাদনা]

তথ্যসূত্র[সম্পাদনা]

  1. Does Gravity Travel at the Speed of Light?, UCR Mathematics. 1998. Retrieved 3 July 2008
  2. পদার্থবিজ্ঞান প্রথম পত্র by ড.অামির হোসেন খান,প্রফেসর মোহাম্মদ ইসহাক,ড.মো.নজরুল ইসলাম