১ একক বাহুর দৈর্ঘ্য বিশিষ্ট একটি ঘনকের কর্ণসমূহ। AC' (নীল রঙে দেখানো) একটি ত্রিমাত্রিক কর্ণ নির্দেশ করে যার দৈর্ঘ্য , যখন এসি (লাল রঙে দেখানো হয়েছে) একটি মুখ </ref> এবং AC(লাল রঙে দেখানো) একটি দ্বিমাত্রিক কর্ণ নির্দেশ করে।যার দৈর্ঘ্য রয়েছে ।
জ্যামিতিতে, কর্ণ হলো এমন একটি রেখাংশ যা বহুভুজ বা বহুতলকের দুটি শীর্ষ যোগ করে পাওয়া যায় , যেখানে শীর্ষবিন্দুগুলি একই প্রান্তে থাকবে না । অনানুষ্ঠানিকভাবে, যে কোনও ঢালু রেখাকে কর্ণ বলা হয় । কর্ণ শব্দটি প্রাচীন গ্রিক διαγώνιος ডায়াগনোসিস থেকে উদ্ভূত হয়েছে,[১] "কোণ থেকে কোণ" (- dia-, "মাধ্যমে", "জুড়ে" এবং γωνία গোনিয়া, "কোণ", গুনি "হাঁটু" সম্পর্কিত) । এটিকে স্ট্রাবো[২] এবং ইউক্লিড উভয়[৩] একটি রম্বস বা ঘনকের দুই শীর্ষবিন্দুর সংযোগকারী একটি রেখা বোঝাতে ব্যবহার করতেন।[৪] এবং পরে লাতিন ভাষায় diagonus(" ঢালু রেখা") নামে গৃহীত হয়েছে ।
ম্যাট্রিক্স বীজগণিতের ক্ষেত্রে, বর্গ ম্যাট্রিক্সের ক্ষেত্রে কর্ণ হলো এক কোণ থেকে দূরের কোণে বিস্তৃত ভুুুুক্তিসমূহের একটি সেট।
বহুভুজের ক্ষেত্রে , একটি কর্ণ হলো এমন একটি রেখাংশ যা যেকোন দুটি অ-ধারাবাহিক শীর্ষ যোগ করে পাওয়া যায় । অতএব, একটি চতুর্ভুজের দুটি কর্ণ আছে, বিপরীত জোড়া শীর্ষ যোগ করে পাওয়া যায় । যে কোন উত্তল বহুভুজের জন্য, সমস্ত কর্ণ বহুভুজের ভিতরে থাকে, কিন্তু রি-এনট্রান্ট বহুভুজের জন্য, কিছু কর্ণ বহুভুজের বাইরে থাকে।
যেকোনো n-বাহু বিশিষ্ট বহুভুজ (n ≥ 3), উত্তল অথবা অবতলের, সংখ্যক কর্ণ রয়েছে , যেহেতু প্রত্যেকটি শীর্ষবিন্দুর তার নিজের এবং পার্শ্ববর্তী দুটি বিন্দু বাদে অন্য সকল শীর্ষবিন্দুর সাথে কর্ণ রয়েছে ।অথবা n − 3 সংখ্যক কর্ণ এবং প্রত্যেকটি কর্ণ দুটি শীর্ষবিন্দু বিনিময়(share) করে।
Bronson, Richard (১৯৭০), Matrix Methods: An Introduction, New York: Academic Press, এলসিসিএন70097490উদ্ধৃতি টেমপ্লেট ইংরেজি প্যারামিটার ব্যবহার করেছে (link)
Cullen, Charles G. (১৯৬৬), Matrices and Linear Transformations, Reading: Addison-Wesley, এলসিসিএন66021267উদ্ধৃতি টেমপ্লেট ইংরেজি প্যারামিটার ব্যবহার করেছে (link)
Nering, Evar D. (১৯৭০), Linear Algebra and Matrix Theory (2nd সংস্করণ), New York: Wiley, এলসিসিএন76091646উদ্ধৃতি টেমপ্লেট ইংরেজি প্যারামিটার ব্যবহার করেছে (link)