সমীকরণ: সংশোধিত সংস্করণের মধ্যে পার্থক্য

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
বিষয়বস্তু বিয়োগ হয়েছে বিষয়বস্তু যোগ হয়েছে
Addbot (আলোচনা | অবদান)
বট: আন্তঃউইকি সংযোগ সরিয়ে নেওয়া হয়েছে, যা এখন উইকিউপাত্ত ...
Mr babul paul (আলোচনা | অবদান)
৩৫ নং লাইন: ৩৫ নং লাইন:
If a function that is not [[injective]] is applied to both sides of a true equation, then the resulting equation will still be true, but it may be less useful. Formally, one has an [[Logical conditional|implication]], not an [[Logical biconditional|equivalence]], so the solution set may get larger. The functions implied in properties (1), (2), and (4) are always injective, as is (3) if we do not multiply by [[0 (number)|zero]]. Some generalized [[Product (mathematics)|products]], such as a [[dot product]], are never injective.
If a function that is not [[injective]] is applied to both sides of a true equation, then the resulting equation will still be true, but it may be less useful. Formally, one has an [[Logical conditional|implication]], not an [[Logical biconditional|equivalence]], so the solution set may get larger. The functions implied in properties (1), (2), and (4) are always injective, as is (3) if we do not multiply by [[0 (number)|zero]]. Some generalized [[Product (mathematics)|products]], such as a [[dot product]], are never injective.
-->
-->

== আরও দেখুন ==
== আরও দেখুন ==
<div class="references-small" style="-moz-column-count:3; column-count:3;">
<div class="references-small" style="-moz-column-count:3; column-count:3;">

১৭:০৮, ৮ আগস্ট ২০১৩ তারিখে সংশোধিত সংস্করণ

সমীকরণ (ইংরেজি: Equation) হল সংখ্যাপ্রতীক ব্যবহার করে লেখা এক ধরনের গাণিতিক বিবৃতি, যাতে দুইটি জিনিসকে গাণিতিকভাবে সমান বা সমতুল্য দেখানো হয়। সমান চিহ্ন (=) ব্যবহার করে সমীকরণ লেখা হয়, যেমন

উপরের সমীকরণটি গাণিতিক সমতার একটি উদাহরণ। এই গাণিতিক সমতাটি একটি বিবৃতি দুইটি ধ্রুবককে সমান বলা হয়েছে। গাণিতিক সমতার বিবৃতি সত্য বা মিথ্যা হতে পারে।

বেশির ভাগ সময় এক বা একাধিক চলরাশিবিশিষ্ট দুইটি গাণিতিক এক্সপ্রেশনের সমতা প্রকাশের জন্য সমীকরণ ব্যবহার করা হয়। যেমন আমরা বলতে পারি যে যেকোন বাস্তব সংখ্যা -এর জন্য নীচের সমীকরণটি সত্য।

উপরের সমীকরণটি গাণিতিক অভেদের একটি উদাহরণ। অর্থাৎ চলরাশির যেকোন মানের জন্য সমীকরণটি সত্য। অন্যদিকে নিচের সমীকরণটি অভেদ নয়:

এই সমীকরণটি -এর মাত্র দুইটি মান ব্যতীত বাকী অসংখ্য মানের জন্য মিথ্যা। ঐ দুইটি মানকে এই সমীকরণের মূল বা সমাধান বলা হয়। উপরের সমীকরণের জন্য এবং হল মূল। সুতরাং যদি কোন সমীকরণ সত্য হয়, তবে এটি এর অন্তর্ভুক্ত চলরাশিগুলির মান সম্পর্কে তথ্য বহন করে। কোন সমীকরণ সমাধান করা বলতে সেই সমীকরণের মূল বের করাকে বোঝায়।

অনেক লেখক সমীকরণ বলতে কেবল সেই সমস্ত সমতাকে বোঝান, যেগুলি অভেদ নয়। উদাহরণস্বরূপ

একটি অভেদ, অন্যদিকে

একটি সমীকরণ, যার মূলদ্বয় এবং । কোন বিবৃতি দিয়ে অভেদ না কি সমীকরণ বোঝানো হয়েছে, তা সাধারণত প্রতিবেশ থেকে বুঝে নিতে হয়।

ইংরেজি বর্ণমালা শুরুর দিকের বর্ণগুলি, যেমন a, b, c... দিয়ে ধ্রুবক এবং শেষের দিকের বর্ণগুলি, যেমন x, y, z... দিয়ে চলরাশি নির্দেশ করা হয়। রনে দেকার্ত এই রীতিতে লেখা চালু করেন।

ধর্ম

বীজগণিতে যদি একটি সমীকরণ সত্য হয়, তবে নিচের অপারেশনগুলি ব্যবহার করে সেটি থেকে আরেকটি সত্য সমীকরণ উৎপাদন করা সম্ভব:

  1. উভয় পক্ষে যেকোন রাশি যোগ করা যাবে।
  2. উভয় পক্ষ থেকে যেকোন রাশি বিয়োগ করা যাবে।
  3. উভয় পক্ষকে যেকোন রাশি দিয়ে গুণ করা যাবে।
  4. উভয় পক্ষকে যেকোন অশূন্য রাশি দিয়ে ভাগ করা যাবে।
  5. সাধারণত, যেকোন গাণিতিক ফাংশন উভয় পক্ষে প্রয়োগ করা যাবে।

আরও দেখুন

বহিঃসংযোগ

টেমপ্লেট:Link FA