দ্বিঘাত সমীকরণ

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
Jump to navigation Jump to search
সাধারণ দ্বিঘাত সমীকরণের মূল নির্ণয়ের সূত্র

গণিতশাস্ত্রে, দ্বিঘাত সমীকরণ হল দুই মাত্রার বহুপদী সমীকরণ যার সাধারণ রূপ:

এখানে x একটি চলক এবং a, bc ধ্রুবক যেখানে a এর মান শুন্য হতে পারে না। কারণ a শূণ্য হলে এটি একটি একঘাত সমীকরণে রূপ নেবে। দ্বিপদ সমীকরণের ইংরেজি প্রতিশব্দ কোয়াড্রেটিক এসেছে ল্যাটিন শব্দ কোয়াড্রেটাস (quadratus) থেকে যার অর্থ বর্গ।

দ্বিঘাত সমীকরণে শুধুমাত্র একটি অজানা রাশি বা চলক থাকে। তাই একে একচলক সমীকরণ বলে। এই সমীকরণে শুধুমাত্র x এর দ্বিতীয় ঘাত থাকে। তাই এটি দ্বিঘাত বহুপদী।

দ্বিঘাত সমীকরণ মধ্যপদ বিশ্লেষণ (ইংরেজিতে factoring, factorising, factorizing বা middle-term নামে পরিচিত) এর মাধ্যমে, বর্গ পূর্ণ করার মাধ্যমে, মূল নির্ণয় সূত্রের সাহায্যে অথবা লেখচিত্রাঙ্কনের সাহায্যে। দ্বিঘাত সমীকরণের মত গাণিতিক সমস্যার সমাধান মানুষ ২০০০ খ্রিস্টপূর্বেও করেছে বলে জানা যায়।

ইতিহাস[সম্পাদনা]

সমাধান[সম্পাদনা]

   এই সূত্রের প্রমানটি হল --
       ax² + bx + c = 0

বা x² + bx/a +c/a =0 [ a দিয়ে ভাগ ] বা x² + (b/a)x = –c/a বা x² + 2•x•(b/2a)+(b/2a)² =(b/2a)²–(c/a)

                             [ উভয়পক্ষে (b/2a)² যোগ]

বা (x+b/2a)² = (b² – 4ac)/4a² বা x + b/2a = ±√(b² – 4ac) /2a [ বর্গমূল] বা X = [–b ±√(b² – 4ac)] /2a [ প্রমাণিত]

উদাহরণ ও প্রয়োগ[সম্পাদনা]

বহুল পরিচিত গোল্ডেন রেশিও এই দ্বিঘাত সমীকরণের সমাধান করে পাওয়া যায়।

বৃত্ত এবং অন্যান্য কনিক যেমন উপবৃত্ত, অধিবৃত্ত, পরাবৃত্তের সমীকরণ দুই চলক বিশিষ্ট দ্বিঘাত সমীকরণ।

আরও দেখুন[সম্পাদনা]