পঞ্চমাত্রিক ক্ষেত্র

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
৫-কিউবের একটি দ্বিমাত্রিক সমকোণী অভিক্ষেপ

পঞ্চমাত্রিক ক্ষেত্র হলো পাঁচটি মাত্রা বিশিষ্ট একটি ক্ষেত্র। যদি বাস্তবিকভাবে ব্যাখ্যা করা হয়, এটি স্বাভাবিক তিন মাত্রা বিশিষ্ট ক্ষেত্রের চেয়ে আরও বেশি এবং চতুর্থ মাত্রা হিসেবে আপেক্ষিক পদার্থবিজ্ঞানে সময়কে ব্যবহার করা হয়।[১] এটি একটি বিমূর্ত অবস্থা যা গণিতে প্রায়ই বৈধ হিসেবে ব্যবহার করা হয়। গণিত এবং পদার্থবিজ্ঞানে N নাম্বারের একটি তালিকা N-মাত্রিক ক্ষেত্রে অবস্থান বোঝায়। এই বিশ্বজগৎ পঞ্চমাত্রিক কিনা এই নিয়ে বিতর্ক রয়েছে।

পদার্থবিজ্ঞান[সম্পাদনা]

পঞ্চমাত্রিক জগতের ব্যাপারে প্রথম দিকের বেশীরভাগ কাজে প্রকৃতির চারটি মৌলিক শক্তির সমন্বয়ে তত্ত্ব তৈরির চেষ্টা করা হয়েছিল। এগুলো হলোঃ শক্তিশালী এবং দুর্বল নিউক্লিয়ার বল, অভিকর্ষ এবং তড়িৎচৌম্বকজার্মান গণিতবিদ থেডর কালুজা এবং সুইডিশ পদার্থবিদ অস্কার ক্লেইন আলাদাভাবে ১৯২১ সালে কালুজা-ক্লেইন তত্ত্ব তৈরি করেছিলেন যেখানে অভিকর্ষ এবং তড়িৎচৌম্বক শক্তিকে একীভূত করতে পঞ্চম মাত্রাটি ব্যবহার করা হয়েছিলো। যদিও তাদের এই প্রচেষ্টায় পরবর্তীতে কিছুটা ভুল পাওয়া যায়, গত শতাব্দীতে আরও গবেষণার ক্ষেত্রে রসদ যোগায়।[১]

এই ক্ষেত্রটি কেন সরাসরি দেখা যাবেনা সেটির ব্যাখ্যা হিসেবে ক্লেইন বলেন যে, পঞ্চম মাত্রাটি খুবই ছোটো এবং ১০-৩৩ সেন্টিমিটার ঘন লুপের ভেতরে গুটিয়ে থাকতে পারে।[১] পানিতে বৃষ্টির ফোঁটার কারণে সৃষ্ট ঢেউকে পুকুরের মাছ যেমন একটি ছায়া হিসেবে দেখতে পায়, তেমনি মানুষের বোধ ক্ষমতার চেয়ে অনেক বেশি মাত্রায় তরঙ্গায়িত হওয়ার কারণে তার যুক্তি মতে, তিনি আলোকে একটি সমস্যা হিসেবে দেখেছিলেন। [২] যদিও এটা সঠিক ভাবে নির্ণয় করা যায় না, কিন্তু আপাতদৃষ্টিতে এটি পরোক্ষভাবে অন্য একটি শক্তির মাঝে সম্পর্ক নির্দেশ করে। কালুজা ক্লেইন তত্ত্বে ১৯৭০ সালে সুপারস্ট্রিং তত্ত্ব এবং সুপারগ্রাভিটি তত্ত্বের উত্থানের কারণে একটি নতুন মাত্রা যুক্ত হয়। এই দুটি তত্ত্বে বাস্তবে শক্তির কম্পিত অবস্থা (একটি গাণিতিক স্বীকার্য যা ১০ বা তার বেশি মাত্রায় কাজ করবে) সম্পর্কে ধারণা ছিলো। সুপারস্ট্রিং তত্ত্বে এরপর এম-তত্ত্ব নামে আরও সাধারন একটি দিক যুক্ত হলো। এম-তত্ত্ব আগের ১০টি অপরিহার্য মাত্রার সাথে আরও একটি সম্ভাব্য দৃশ্যমান মাত্রা যুক্ত করলো যেটি সুপারস্ট্রিং এর অস্তিত্ব সমর্থন করে। অন্য ১০টি মাত্রা জটিল অথবা অতিপারমানবিক লেভেলের চেয়ে ছোটো আকারে গুটানো থাকতে পারে। [১][২] বর্তমানে কালুজা ক্লেইন তত্ত্বকে মূলত গগ তত্ত্ব হিসেবে গগের সার্কেল গ্রুপের সাথে দেখা হয়।

যদিও লার্জ হাড্রন কোলিডার এর অস্তিত্তের পরোক্ষ বিষয়গুলো ধারণ করার সুযোগ করে দিয়েছিলেন, পঞ্চমাত্রিক ক্ষেত্র সরাসরি দেখা কঠিন। [১] পদার্থবিদরা বলেন অতিপারমাণবিক বস্তুর সংঘর্ষের ফলে চতুর্মাত্রিক জগতের একটি গ্রাভিশন অথবা ব্রেইন সহ নতুন বস্তু তৈরি হয়ে পঞ্চমাত্রিক জগতের রাজ্যে ঢুকে যায়।[৩] এম-থিওরি প্রকৃতির অন্যান্য মৌলিক শক্তির তুলনায় মধ্যাকর্ষের দুর্বলতার ব্যাপারটি দৃশ্যমানভাবে ব্যাখ্যা করে। উদাহরণস্বরূপ বলা যায়, যখন চুম্বক ব্যবহার করে একটি টেবিল থেকে একটি পিন তোলা হয় - এটি খুব সহজেই পৃথিবীর মধ্যাকর্ষকে অতিক্রম করতে পারে।[১]

বিংশ শতকের শুরুর দিকে গাণিতিকভাবে পঞ্চম মাত্রা নিয়ে তত্ত্বীয়ভাবে কাজ করা শুরু হয়। এসব তত্ত্ব হিলবার স্পেসের কথা উল্লেখ করে। এটি এমন একটি স্বীকার্য যা অসীম সংখ্যক কোয়ান্টাম মাত্রাকে সমর্থন করার জন্য অসীম সংখ্যক গাণিতিক মাত্রা স্বীকার করে। আইনস্টাইন, বারগম্যান এবং বারগম্যানের পরবর্তী সময়ে সাধারণ রিলেটিভিটির সময় মাত্রার সাথে তড়িৎচৌম্বকীয় তত্ত্ব সমর্থনের জন্য আরও একটি অতিরিক্ত বাহ্যিক মাত্রা যুক্ত করার বিফল চেষ্টা করা হয়েছিলো।[১] তাদের ১৯৩৮ সালের রিপোর্টে আইনস্টাইন এবং বারগম্যান সর্বপ্রথম চতুর্মাত্রিক জগতকে আধুনিক দৃষ্টিকোণ থেকে ব্যাখ্যা করেন। এটি অনেকদিন পর্যন্ত আইনস্টাইন-ম্যাক্সওয়েল তত্ত্ব নামে পরিচিত ছিল। এটি ব্যাখ্যা করা হয়েছিলো এমন একটি পঞ্চমাত্রিক তত্ত্ব থেকে যাতে সুষমভাবে পাঁচটি মাত্রাই উপস্থিত ছিল। তারা বলেছিলেন যে তড়িৎচৌম্বক তৈরি হয় মহাকর্ষীয় ক্ষেত্র থেকে যা পঞ্চম মাত্রায় "সমবর্তিত" হয়।[৪]

আইনস্টাইন এবং বার্গম্যানের সবচেয়ে উল্লেখযোগ্য বৈশিষ্ট হচ্ছে, তারা পঞ্চম মাত্রাটিকে অত্যেন্ত গুরুত্বের সাথে ম্যাট্রিক টেনসোর এবং তড়িৎচুম্বকীয় সম্ভাবনার সম্মিলিত কার্যকলাপের চেয়ে বেশি বাস্তবসম্মত দেখতে চেয়েছিলেন। কিন্তু পরবর্তীতে তারা তত্ত্বটি পরিবর্তন করতে গিয়ে এর পঞ্চমাত্রিক প্রতিসমতাকে ভেঙে ফেলেন এবং এটি ফিরিয়ে নেন। [[এডওয়ার্ড উইটেনের মতে তাদের যুক্তি ছিল, এই তত্ত্বের আরও প্রতিসম সংস্করণে একটি নতুন দীর্ঘ ভরবিহীন এবং স্কেলার ক্ষেত্রের উপস্থিতির সম্ভাবনা ছিল, যার ফলে আইনস্টাইনের সাধারণ আপেক্ষিকতা তত্ত্বে কিছু মৌলিক পরিবর্তন আনতে হতো।[৫] একটি পঞ্চমাত্রিক রেইম্যান কারভেটর টেনসরে মিনকোওস্কি ক্ষেত্র এবং শূন্যস্থানে ম্যাক্সওয়েলের সমীকরণ সংযুক্ত হতে পারে।

১৯৯৩ সালে পদার্থবিদ জেরার্ড টি হুফ্ট হলোগ্রাফিক নীতি সামনে নিয়ে আসেন। এটি অতিরিক্ত মাত্রাটি দৃশ্যমান হওয়ার ব্যাপারে এবং মহাশূন্যে একটি মাত্রা কম থাকা অবস্থায় সময় বক্রতার ব্যাপারে তথ্য দেয়। উদাহরণস্বরূপ বলা যায় হলোগ্রাম হলো ত্রিমাত্রিক ছবি যা দ্বিমাত্রিক পৃষ্ঠতলে দেখানো হয়। যখন দর্শক নড়াচড়া করে তখন এটি ছবিগুলোকে বক্রতা প্রদান করে। অনুরূপভাবে সাধারণ আপেক্ষিকতায় চতুর্থ মাত্রাটি দৃশ্যমান ত্রিমাত্রিক জগতে একটি বাঁকা পথে অগণিত ক্ষুদ্রাতিক্ষুদ্র বস্তু হিসেবে দৃশ্যমান হয়। টি হুফ্ট কল্পনা করতেন যে পঞ্চম মাত্রাটি সত্যিকার অর্থেই মহাশূন্য সময়ের ফ্যাব্রিক।

পঞ্চমাত্রিক জ্যামিতি[সম্পাদনা]

ক্লেইনের সংজ্ঞা মতে, "জ্যামিতি হলো স্থান সময়ের পরিবর্তিত বৈশিষ্ট সংক্রান্ত পড়াশোনা, যা নিজের মধ্যেই রূপান্তরিত হতে পারে।" একইভাবে পঞ্চমাত্রার জ্যামিতি স্থান সময়ের পরিবর্তনের এমন বৈশিষ্ট নিয়ে কাজ করে যা নিজের মধ্যেই রূপান্তরিত হতে পারে যা সূত্র এবং সমীকরণ দিয়ে প্রকাশ করা যায়।[৬]

পলিটপ[সম্পাদনা]

পাঁচ বা তার বেশি মাত্রায় মাত্র তিনটি নিয়মিত পলিটপ উপস্থিত থাকে| পঞ্চমাত্রায় এগুলো হলো:

  1. {৩,৩,৩,৩}, ৬টি চিহ্ন, ১৫টি প্রান্ত, ২০টি মুখ(প্রতিটি সমবাহু ত্রিভুজ), ১৫টি কোষ(প্রতিটি স্বাভাবিক চতুষ্তলক) এবং ৬টি হাইপারসেলের(প্রতিটি এক একটি ৫-কোষ) সাথে সিমপ্লেক্স পরিবারের ৫-সিমপ্লেক্স
  2. {৪,৩,৩,৩}, ৩২টি চিহ্ন, ৮০টি প্রান্ত,(প্রতিটি বর্গাকার, ৪০টি কোষ (প্রতিটি এক একটি কিউব) এবং ১০টি হাইপারসেলের (প্রতিটি এক একটি টেসেরাক্ত) সাথে হাইপারকিউব পরিবারের ৫-কিউব
  3. {৩,৩,৩,৪}, ১০টি চিহ্ন​, ৪০টি প্রান্ত​, ৮০টি প্রান্তমুখ (প্রতিটি ত্রিভুজ), ৮০টি কোষ (প্রতিটি চতুষ্তলক) এবং ৩২টি টেসেরাক্ত এর (প্রতিটি ৫ কোষ বিশিষ্ট) বিশিষ্ট ক্রস পলিটপ পরিবারের ৫-অর্থোপেক্স]

৫-পলিটপের একটি স্বতন্ত্র গুরুত্বপূর্ণ সদস্য হলো ৫-ডেমিকিউব, এইচ{৪,৩,৩,৩} এর ৫-কিউবের (১৬) তুলনায় অর্ধেক পরিমাণ শীর্ষ রয়েছে যা বিভিন্ন ৫-কোষ এবং ১৬-কোষের হাইপারকোষ দ্বারা আবদ্ধ। সম্প্রসারিত অথবা স্টেরিকেটেড ৫-সিমপ্লেক্স হলো lattice এর চূড়ার প্রতিচ্ছবি, CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png। এটির কক্সিটার নকশার একটি দ্বিপ্রতিসম অবস্থা রয়েছে। ল্যাটিসের চুম্বন সংখ্যা হলো ৩০, যা এর শীর্ষগুলোতে দেখা যায়| [৭] রেক্টিফাইড ৫-অর্থপ্লেক্স হলো ডি lattice, CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png এর চূড়ার প্রতিচ্ছবি। এর ৪০টি শীর্ষ ল্যাটিসের চুম্বন সংখ্যা নির্দেশ করে এবং এর সর্বোচ্চ্য মাত্রা হলো ৫।[৮]

পঞ্চমাত্রার নিয়মিত এবং অর্ধনিয়মিত পলিটপ সমূহ
(প্রতিসাম্যতার কক্সেটার সমতলে লম্ব অভিক্ষেপ হিসেবে দেখানো হয়েছে)
ইউট(এ) বি ডি
altN=5-simplex
৫-সিমপ্লেক্স
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{৩,৩,৩,৩}
5-simplex t04 A4.svg
স্টেরিকেটেড ৫-সিমপ্লেক্স
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
altN=5-cube
৫-কিউব
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{4,3,3,3}
altN=5-orthoplex
৫-অর্থোপেক্স
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{৩,৩,৩,৪}
altN=rectigied 5-orthoplex
রেক্টিফাইড
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
আর{৩,৩,৩,৪}
5-demicube t0 D5.svg
৫-ডেমিকিউব
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
এইচ{৪,৩,৩,৩}

হাইপারস্ফিয়ার[সম্পাদনা]

৫ম মাত্রায় একটি হাইপারস্ফিয়ারে (এর পৃষ্ঠতল চতুর্মাত্রিক হওয়ার কারণে একে চতুর্মাত্রিক ও বলা হয়ে থাকে) ৫ম মাত্রার সকল বিন্দু কেন্দ্রীয় বিন্দু P থেকে একটি নির্দিষ্ট r দূরত্বে থাকে। হাইপারভলিউমটি যতটুকু হাইপারসারফেস দখল করে তার পরিমাণ হলো:

তথ্যসূত্র[সম্পাদনা]

  1. Paul Halpern (এপ্রিল ৩, ২০১৪)। "How Many Dimensions Does the Universe Really Have"। Public Broadcasting Service। সংগ্রহের তারিখ সেপ্টেম্বর ১২, ২০১৫ 
  2. Oulette, Jennifer (মার্চ ৬, ২০১১)। "Black Holes on a String in the Fifth Dimension"। Discovery News। নভেম্বর ১, ২০১৫ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ সেপ্টেম্বর ১২, ২০১৫ 
  3. Boyle, Alan (জুন ৬, ২০০৬)। "Physicists probe fifth dimension"। NBC news। সংগ্রহের তারিখ সেপ্টেম্বর ১২, ২০১৫ 
  4. Einstein, Albert; Bergmann, Peter (১৯৩৮)। "On A Generalization Of Kaluza's Theory Of Electricity"। Annals of Mathematics39: 683। ডিওআই:10.2307/1968642 
  5. Witten, Edward (জানুয়ারি ৩১, ২০১৪)। "A Note On Einstein, Bergmann, and the Fifth Dimension"। arXiv:1401.8048অবাধে প্রবেশযোগ্য 
  6. Sancho, Luis (অক্টোবর ৪, ২০১১)। Absolute Relativity: The 5th dimension (abridged)। পৃষ্ঠা 442। 
  7. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A5.html
  8. Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai [১]