অধিবৃত্ত
গণিতশাস্ত্রে কোনো একই অক্ষ বিশিষ্ট এবং একই শীর্ষবিন্দু বিশিষ্ট দুইটি ফাঁপা কোনককে একটি সমতল দ্বারা কাটলে যে বক্ররেখাদ্বয় পাওয়া যায় তাকে অধিবৃত্ত বলে ৷ সমতলটি অক্ষের সমান্তরাল হওয়া জরুরি নয় ৷ একটি অধিবৃত্ত বলতে একই সমতলে অবস্থিত দুইটি বক্ররেখাকেই বুঝায় ৷ এদের একটি অপরটির আয়না প্রতিচ্ছবি ৷
গাণিতিক সংজ্ঞা[সম্পাদনা]
কার্তেসীয় সমতলে একটি নির্দিষ্ট বিন্দু ও একটি নির্দিষ্ট সরলরেখা থেকে যে সব বিন্দুর দূরত্বের অনুপাত একটি ধ্রুবক, তাদের সেই একটি সঞ্চারপথ এবং তাকে কনিক বলা হয়।
আরেকটি সংজ্ঞাঃ উপকেন্দ্র ও দিকাক্ষ (নিয়ামক) থেকে যে চলমান বিন্দুর দূরত্বের অনুপাত ১ অপেক্ষা বড়ো একটি ধ্রুবক, তার সঞ্চারপথকে অধিবৃত্ত বা Hyperbola বলে। এক্ষেত্রে e>1, এখানে e= eccentricity বা উৎকেন্দ্রতা।
সমীকরণ[সম্পাদনা]
যদি কোন অধিবৃত্তের পরাক্ষকে কার্তেসীয় স্থানাঙ্কে X-অক্ষ বরাবর ধরা হয়,
কোনো বিন্দু এর দুটি নাভি থেকে দূরত্ব হবে যথাক্রমে ও । তবে বিন্দু টি অধিবৃত্তে অবস্থান করবে যদি
- হয়
উভয়পক্ষে বর্গ করে বর্গমূল চিহ্ন তুলে দেওয়ার পর সম্পর্ককে কাজে লাগিয়ে পাওয়া যায়:
এটিই অধিবৃত্তের সমীকরণ।
উৎকেন্দ্রতা[সম্পাদনা]
নাভিলম্ব[সম্পাদনা]
কোন একটি নাভির মধ্যে দিয়ে অন্তর্গত অধিবৃত্তের একটি জ্যা যা পরাক্ষের উপর লম্বভাবে অবস্থিত তাকে নাভিলম্ব (Latus rectum) বলে। ইহার দৈর্ঘ্য:
প্রাচলিক সমীকরণ[সম্পাদনা]
এই সমীকরণ প্রচলের (বা প্যারামিটার) সাহায্যে নিম্নলিখিত আকারেও লেখা যায়:
আরও দেখুন[সম্পাদনা]
এই নিবন্ধটি অসম্পূর্ণ। আপনি চাইলে এটিকে সম্প্রসারিত করে উইকিপিডিয়াকে সাহায্য করতে পারেন। |
তথ্যসূত্র[সম্পাদনা]
- ↑ Protter & Morrey (1970, p. 310)
- ↑ Protter & Morrey (1970, p. 310)