উপবৃত্ত

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
কণিকের সাথে একটি সমতল ক্ষেত্রের এমন ছেদের ফলেই উপবৃত্তের জন্ম হয়

একটি কণিককে একটি সমতল ক্ষেত্র দ্বারা যদি এমনভাবে ছেদ করানো হয় যাতে ফলাফল হিসেবে একটি বদ্ধ বক্রের জন্ম হয় তাহলে উক্ত বদ্ধ বক্রটিকে বলে উপবৃত্ত (ইংরেজি: Ellipse)। এটি এক ধরণের সমতল বক্র। বৃত্ত একটি বিশেষ ধরণের উপবৃত্ত। ছেদক সমতল ক্ষেত্রটি যদি কণিকের অক্ষের সাথে সমকোণ তৈরি করে তাহলে উৎপন্ন বদ্ধ বক্রের নামই বৃত্ত। উপবৃত্তের আরেকটি সংজ্ঞাও দেয়া যায়: উপবৃত্ত একটি তলে অবস্থিত এমন সকল বিন্দুর সঞ্চারপথ যারা, দুটি নির্দিষ্ট বিন্দু থেকে যাদের দূরত্বের যোগফল সর্বদা একটি নির্দিষ্ট ধ্রুবকের সমান।[১]

উপবৃত্ত সব সময়ই আবদ্ধ বক্র এবং কণিক ছেদের একটি বদ্ধ অংশের ফলাফল। এ ধরণের কণিক ছেদের অন্য দুটি ফলাফল হচ্ছে অধিবৃত্ত এবং পরাবৃত্ত যারা যথাক্রমে মুক্ত এবং অনাবদ্ধ ছেদের ফলাফল।

তথ্যসূত্র[সম্পাদনা]

  1. Ellipse, Wolfram MathWorld