অমূলদ সংখ্যা

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন

অমূলদ সংখ্যা

π হচ্ছে সবচেয়ে বেশি পরিচিত অমূলদ সংখ্যা
এর মান একটি অমূলদ সংখ্যা

অমূলদ সংখ্যা হল সেসব বাস্তব সংখ্যা যেগুলোকে দুটি পূর্ণ সংখ্যার অনুপাতে প্রকাশ করা যায় না। অমূলদ সংখ্যাকে দশমিক-এ প্রকাশ করার চেষ্টা করলে দশমিকের পর যত ঘর অবধি-ই দেখা হবে, কোন পৌনঃপুনিকতা(recurrence) দেখা যাবেনা। শুধু দশমিক সংখ্যা পদ্ধতি নয় যে কোনো সংখ্যা পদ্ধতির জন্যই (যেমন দ্বিনিধানি সংখ্যা পদ্ধতি) এই কথাটি খাটবে। এটাও দেখাও যায় যে, যে কোনো সংখ্যা(k) যা সঠিক ভাবে কোনো ধনাত্বক সংখ্যার n তম ঘাত নয় তার n তম মূল অমূলদ সংখ্যা হবে। আরো দেখাও যায় যে, যে কোনো সংখ্যা যা সঠিক ভাবে কোনো মূলদ সংখ্যার n তম ঘাত নয় তার n তম মূল অমূলদ সংখ্যা হবে।

কয়েকটি অমূলদ সংখ্যার উদাহরণ হল: , , , এবং (অনেক সময় বলা হয় যে , কিন্তু সেটা এর আসন্নীকৃত মান)।

ইতিহাস[সম্পাদনা]

প্রাচীন গ্রিসে পিথাগোরাস সম্পর্কিত অমুলদ সংখার ইতিহাসটি বেশ রোমাঞ্চকর। হিপ্পসাস নামক পিথাগোরাসের শিষ্য( যারা পিথাগোরিয়ান নামে পরিচিত) আবিস্কার করেন। হিপ্পসাস পিথাগোরাসের সদ্য আবিস্কৃত সমকোণী ত্রিভুজের সূত্র (কোন সমকোনী ত্রিভূজের অতিভূজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বৰ্গক্ষেত্রেরদ্বয়ের সমষ্টির সমান)ব্যবহার করে, দুই বাহুর দৈর্ঘ্য ১ একক ধরে, অতিভুজ বের করতে গিয়ে একটা গোল বাধিয়ে ফেলেন। তিনি কিছুতেই অতিভুজ হিসাবে যে পেয়েছেন তার মান আর হিসাব করতে পারছিলেন না। পরে বুঝলেন যে, এটা আর সব অন্য মুলদ সংখ্যার মত নয়, যাদের দুইটি পুর্ণ সংখ্যার অনুপাত আকারে লেখা সম্ভব। পরবর্তিতে আরো এরকম সংখ্যা আবিস্কৃত হয়। আর গণিতবিদেরা এদের নাম দেন অমুলদ সংখ্যা। প্রাচীন ভারতবৰ্ষেও অমূলদ সংখ্যার চিহ্ন পাওয়া যায়৷ শ্রীনিবাস রামানুজন বলেছিলেন যে এর মান যতো খুশি ততো ঘর। অতি সুপরিচিত একটি অমুলদ সংখ্যা হচ্ছে বৃত্তের পরিধি ও ব্যাসের অনুপাত(যাকে গ্রিক অক্ষর পাই>π দ্বারা নির্দেশ করা হয়)| π= 3.14159265.......

প্রকারভেদ[সম্পাদনা]

➡️ তুরীয় সংখ্যা (ইংরেজীতে transcendental number )

➡️ বীজগাণিতিক সংখ্যা (ইংরেজীতে algebraic number )

অমূলদ সংখ্যা