জটিল সমতল
অবয়ব
কোন জটিল সংখ্যা z-কে একটি দ্বিমাত্রিক কার্তেসীয় স্থানাংক ব্যবস্থার উপর একটি অবস্থান ভেক্টর হিসেবে দেখানো যায়। এই দ্বিমাত্রিক কার্তেসীয় স্থানাংক ব্যবস্থাটিকে জটিল সমতল (ইংরেজি: Complex plane) বলা হয়। ফরাসি গণিতবিদ জঁ-রোবের আরগঁ-র নামানুসারে একে আরগঁ সমতল-ও (Pedoe 1988 এবং Solomentsev 2001 দেখুন)।
একটা জটিল সংখ্যা z-কে তাই কার্তেসীয় স্থানাংক ব্যবস্থায় একটি বিন্দু হিসেবে ভাবা যায়, যে ব্যবস্থায় জটিল সংখ্যাটির x = Re(z) হচ্ছে x-অক্ষ এবং একইভাবে y = Im(z) হচ্ছে y-অক্ষ। এভাবে কার্তেসীয় আকারে প্রকাশ করা কোন জটিল সংখ্যাকে সংখ্যাটির কার্তেসীয় রূপ বা আয়তাকার রূপ বা বীজগাণিতিক রূপ বলা হয় ।
তথ্যসূত্র
[সম্পাদনা]- Pedoe, Dan (১৯৮৮), Geometry: A comprehensive course, Dover, আইএসবিএন 0-486-65812-0
পরিভাষা
[সম্পাদনা]- Complex plane - জটিল সমতল
গণিত বিষয়ক এই নিবন্ধটি অসম্পূর্ণ। আপনি চাইলে এটিকে সম্প্রসারিত করে উইকিপিডিয়াকে সাহায্য করতে পারেন। |