সম্ভাবনার বিধিমালা

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন

সম্ভাবনা কতগুলো বিধি মেনে চলে। ধরা যাক, A একটি ঘটনা। এই ঘটনার সম্ভাবনাকে P(A) দ্বারা প্রকাশ করা হয়।

সম্ভাবনার সংজ্ঞা হতে[সম্পাদনা]

  • P(A) ১।
  • ঘটনা A -এর স্বপক্ষে যদি কোনো নমুনা বিন্দু না থাকে, তবে এর সম্ভাবনা P(A) = ০ হবে।
  • P(S) = 1, যখন S দৈব পরীক্ষা-এর নমুনাক্ষেত্র

বিপ্রতীপ বিধি[সম্পাদনা]

  • A ঘটনার বিপ্রতীপ [A বিপ্রতীপ] (যার অর্থ, A ঘটনাটি না ঘটা); আর সম্ভাবনাকে প্রকাশ করা যায় এভাবে P(A বিপ্রতীপ) = 1 - P(A)।

সম্ভাবনার যোগ বিধি[সম্পাদনা]

  • যদি A এবং B ঘটনাসমূহ একটি দৈব পরীক্ষা-এ সম্পাদিত হয়, তবে A এবং B এর যুগ্ম সম্ভাবনাকে বা দ্বারা প্রকাশ করা হয়।
  • যদি A বা B পরস্পর বিচ্ছিন্ন ঘটনা হয়, তবে A বা B এর সম্ভাবনাকে এভাবে লেখা হয়:
  • যদি A বা B পরস্পর বিচ্ছিন্ন ঘটনা না হয়, তবে A বা B এর যুগ্ম সম্ভাবনাকে এভাবে প্রকাশ করা হয়:

অনপেক্ষতা[সম্পাদনা]

  • যদি A এবং B অনপেক্ষ হয়, তবে A and B এর যুগ্ম সম্ভাবনাকে এভাবে প্রকাশ করা যায়:

শর্তাধীন সম্ভাবনা[সম্পাদনা]

  • A ঘটনার সম্ভাবনা, আরেকটি ঘটনা B -এর সাপেক্ষে প্রকাশ করা হয় P(A|B) দ্বারা, যা পড়া হয় এভাবে "A-এর সম্ভাবনা, B-এর সাপেক্ষে"। সংজ্ঞানুযায়ী

যদি তখন -এর সংজ্ঞা অনির্ণীত।

প্রান্তিক সম্ভাবনা[সম্পাদনা]

A-এর প্রান্তিক সম্ভাবনা P(A) হলো শর্তহীন সম্ভাবনা, B-এর ঘটা বা না ঘটা অগ্রাহ্য করে গণনা করা হয়।

সম্ভাবনা সূত্রসমূহের সারাংশ
ঘটনা সম্ভাবনা
A
A বিপ্রতীপ
A বা B

(A এবং B পরস্পর বিচ্ছিন্ন)

A এবং B

(A এবং B অনপেক্ষ)

A, B -এর সাপেক্ষে

আরো দেখুন[সম্পাদনা]

বহিঃসংযোগ[সম্পাদনা]

B

  1. সাপেক্ষ ঘটনার সম্ভাবনা নিরনয় এর আরেক্টি সুত্র কম্বিনেশন ব্যবহার করে পরতিপাদন করা জায়।

সমস্যা: একটি ব্যাগে ৫টি সাদা,১০টি কালো,৭টি লাল বল আছে।২টি বল একসাথে তুলা হলে (১)২ টিই লাল হওয়ার সম্ভাবনা কত? (২) ২টি একি রঙের হওয়ার সম্ভআবনা কত? (৩)২টি ভিন্ন রঙের হঅয়ার সম্ভাবনা কত?