মূলদ সংখ্যা

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন

মূলদ সংখ্যা হচ্ছে সেই সকল বাস্তব সংখ্যা যাদের আকারে প্রকাশ করা যায়। যেখানে p এবং q উভয় পূর্ণ সংখ্যা এবং q≠0[১]

সাধারণ ধারণা[সম্পাদনা]

যেকোন পূর্ণ সংখ্যা একটি মূলদ সংখ্যা। মূলদ সংখ্যাকে দশমিক আকারেও প্রকাশ করা যায় এবং তা হয় সসীম ঘর দশমিক (যেমন: ১.২৯, ৫.৬৯৮৭, ৮.৯৭৯৮৭) অথবা পৌনঃপুনিক(recurrent) দশমিক (যেমন: ১.৬৩৬৩৬৩৬৩৬৩, ৪.৬৯৬৯৬৯৬৯৬৯, .১০১১০১১০১১০১)। সব পূর্ণসংখ্যাই মূলদ সংখ্যা (কারণ যদি একটি পূর্ণসংখ্যা হয়, তবে , সুতরাং কে দুই পূর্ণ সংখ্যার অনুপাত হিসেবে প্রকাশ করা যাচ্ছে)। অর্থাৎ, ইত্যাদি সবই মূলদ সংখ্যা। কিন্তু এছাড়াও সব ভগ্নাংশগুলিও (যেমন , , , ইত্যাদি) মূলদ সংখ্যা।

যে সব বাস্তব সংখ্যা মূলদ সংখ্যা নয়, অর্থাৎ যাদেরকে দুইটি পূর্ণ সংখ্যার অনুপাত হিসেবে প্রকাশ করা যায় না তাদেরকে বলা হয় অমূলদ সংখ্যা। যেমন: √২=১.৪১৪২১৩... , ৫.০৫০০৫০০০৫... , √৫ ইত্যাদি।

  1. Rosen, Kenneth (২০০৭)। Discrete Mathematics and its Applications (6th সংস্করণ)। New York, NY: McGraw-Hill। পৃষ্ঠা 105,158–160। আইএসবিএন 978-0-07-288008-3