মূলদীয় অপেক্ষক

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
(মূলদীয় ফাংশন থেকে পুনর্নির্দেশিত)

গণিতে একটি মূলদীয় ফাংশন হচ্ছে যেকোনো ফাংশন যাকে মূলদীয় ভগ্নাংশ দিয়ে সংজ্ঞায়িত করা যায়, যেমন একটি বীজগণিতীয় ভগ্নাংশ যেখানে লব এবং হর উভয় হচ্ছে বহুপদী। বহুপদীর সহগকে মূলদ সংখ্যা হওয়ার প্রয়োজন নেই, তারা যেকোনো ফিল্ড K হতে পারে। এই ক্ষেত্রে একজন K এর উপর মূলদীয় ফাংশন এবং মূলদীয় ভগ্নাংশ নিয়ে কথা বলে। চলক গুলোর মান যেকোনো ক্ষেত্র L থেকে নেয়া যেতে পারে যেখানে K থাকবে। তখন ফাংশনের ডোমেন হচ্ছে চলকের মানের সেট যার জন্য হরের মান শূন্য নয় এবং L হচ্ছে কো-ডোমেন।

মূলদীয় ফাংশনের সেট হচ্ছে K ক্ষেত্রের উপর একটি ক্ষেত্র, বহুপদী ফাংশনের চক্রের ভগ্নাংশের ক্ষেত্র হচ্ছে K এর উপর।

সংজ্ঞা[সম্পাদনা]

একটি ফাংশন কে মূলদীয় ফাংশন বলা হবে যদি এবং কেবল যদি নিম্নোক্ত ভাবে লেখা যায়

যেখানে এবং এর বহুপদী, এবং শূন্য বহুপদী নয়। এর ডোমেন হচ্ছে, এর সকল বিন্দুর সেট,যার জন্য হর শূন্য নয়।

যাই হোক, যদি এবং এর অধ্রুবক বহুপদী সর্বোচ্চ সাধারণ গুণনীয়ক থাকে, তখন এবং একটি মূলদীয় ফাংশন

গঠন করে

যার থেকে একটি বড় ডোমেন থাকতে পারে এবং তা ডোমেন এর ওপর এর সমান। এবং পরিচিতির এটি একটি সাধারণ ব্যবহার, যা "ধারাবাহিকতা দ্বারা" বারালে হয় এর প্রতি ডোমেন । প্রকৃতপক্ষে, একজন মূলদীয় ভগ্নাংশকে সংজ্ঞায়িত করতে পারে বহুপদীর ভগ্নাংশের সমান সারি হিসেবে, যেখানে দুইটি ভগ্নাংশ A(x)/B(x) এবং C(x)/D(x)সমান মনে করা হয় যদি A(x)D(x) = B(x)C(x) হয়। সেক্ষেত্রে হচ্ছে এর সমান।

একটি আদর্শ মূলদীয় ফাংশন হচ্ছে একটি মূলদীয় ফাংশন যাতে এর ডিগ্রি ডিগ্রি থেকে বড় নয় এবং উভয়ই বাস্তব বহুপদী

উদাহরণ[সম্পাদনা]

মূলদীয় ফাংশনের উধাহরন
৩ ডিগ্রির মূলদীয় ফাংশন
৩ ডিগ্রির মূলদীয় ফাংশন:
২ ডিগ্রির মূলদীয় ফাংশন
২ ডিগ্রির মূলদীয় ফাংশন:

মূলদীয় ফাংশন , দ্বারা সংজ্ঞায়িত নয়। x যতই অসীমের কাছা কাছি যেতে থাকে এটি এর এসিমটোটিক হতে থাকে। .

মূলদীয় ফাংশন সকল বাস্তব সংখ্যার জন্য সংজ্ঞায়িত তবে সকল জটিল সংখ্যার জন্য নয়, যদি x (যেমন, কাল্পনিক একক অথবা এর ঋণাত্মক) বর্গমূল হয়, তখন আনুষ্ঠানিক মূল্যায়ন শূন্য দ্বারা ভাগ নির্দেশ করে: , যা অসংজ্ঞায়িত।

একটি ধ্রুবক ফাংশন যেমন f(x) = π হচ্ছে একটি মূলদীয় ফাংশন যেহেতু ধ্রুবক হচ্ছে বহুপদী। খেয়াল রাখতে হবে যে ফাংশন নিজেই মুলদ, যদিও x এর জন্য f(x) এর সকল মান অমুলদ।

সকল বহুপদী ফাংশন হচ্ছে মূলদীয় ফাংশন এর সাথে। যেসকল ফাংশনকে এভাবে লেখা যায় না যেমন সেগুলো মূলদীয় ফাংশন নয়। "অমূলদ" বিশেষণটি সাধারণত ফাংশনের ক্ষেত্রে ব্যবহার করা হয় না।

মূলদীয় ফাংশন , ১ এর সমান ০ ছাড়া সকল x এর জন্য, যেখানে অপসারণযোগ্য একতা রয়েছে।

দুইটি মূলদীয় ফাংশনের মধ্যে যোগফল, গুণফল অথবা ভাগফল (শূন্য বহুপদী দ্বারা ভাগ ব্যতীত) নিজেই একটি মূলদীয় ফাংশন। যাইহোক, যত্ন না নেয়া হলে আদর্শ আকৃতির জন্য হ্রাসকরণ প্রক্রিয়াতে অসাবধানতাবসত এরকম একতা বাতিল হয়ে যেতে পারে। মূলদীয় ফাংশনের সংজ্ঞা ব্যবহার করে সমশ্রেণীর আশেপাশে যাওয়া যায়, যেহেতু x/x , 1/1 এর সমান।

টেইলর সিরিজ[সম্পাদনা]

যেকোনো মূলদীয় ফাংশনের টেইলর সিরিজের সহগ একটি সরলরৈখিক পৌনঃপুনিকতার সম্পূরককে সন্তুষ্ট করে, যা পাওয়া যেতে পারে মূলদীয় ফাংশনকে এর টেইলর সিরিজের সমান করে সাজিয়ে এবং তা থকে একই বস্তু সংগ্রহ করে।

উদাহরণস্বরূপ,

হর দ্বারা গুণ এবং বিস্তৃত করে,

x এর একই সূচক পাওয়ার জন্য যোগফলের সূচকের সামঞ্জস্যের পর, আমরা পাই

একই ধরনের রাশিগুলোকে একসাথে করে

যেহেতু সঠিক টেইলর সিরিজের কেন্দ্রমুখী ব্যাসার্ধের মধ্যে এটি সকল x এর জন্য সত্য, আমরা নিম্নোক্ত ভাবে গণনা করতে পারি। যেহেতু বাম পাশের ধ্রুবক রাশিটি ডান পাশেরটির সমান হতে হবে তাই

তারপর যেহেতু x এর বাম পাশে কোন সূচক নেই তাই ডানপাশের সকল সহগ শূন্য হবে। যার মাধ্যমে আমরা পাই

বিপরীতভাবে, যখন টেইলর সিরিজের সহগ হিসেবে ব্যবহৃত হয় তখন যেকোনো ক্রম যা সরল পৌনঃপুনিকতাকে সন্তুষ্ট করে তা একটি মূলদীয় ফাংশন নির্ধারণ করে। এটি এই ধরনের পৌনঃপুনিকতা সমাধানে ব্যবহার করা হয়, যেহেতু আংশিক ভগ্নাংশকরণ ব্যবহার করে আমরা যেকোনো মূলদীয় ফাংশনকে 1 / (ax + b) ফ্যাক্টরের যোগফল রূপে লিখতে পারি এবং গুণোত্তর শ্রেণি পর্যন্ত বর্ধিত করে যা টেইলর সহগের একটি সুত্র দেয়, এটি ফাংশন তৈরির একটি পদ্ধতি।

বিমূর্ত বীজগণিত এবং গুণোত্তর ধারণা[সম্পাদনা]

বিমূর্ত বীজগণিতে বহুপদীর ধারণাকে বর্ধিত করা হয়েছে সূত্রের রাশিমালাকে অন্তর্ভুক্ত করার জন্য, যেখানে বহুপদীর সহগকে যেকোনো ক্ষেত্র থেকে নেয়া যাবে। এভাবে প্রদানকৃত ক্ষেত্র F এবং কিছু মধ্যবর্তীX হয় তবে একটি মূলদীয় রাশিমালা হচ্ছে বহুপদী চক্র F[X] ভগ্নাংশ ক্ষেত্রর যেকোনো উপাদান। যেকোনো মূলদীও রাশিমালাকে দুটি বহুপদী P/Q যেখানে Q ≠ ০ এর ভাগফল হিসেবে লেখা যায়, যদিও এই প্রকাশ পদ্ধতি অনন্য নয়। P/Q , R/S এর সমান, যখন বহুপদী P, Q, R এবং S এর PS = QR। যাই হোক যেহেতু F[X] হচ্ছে একটি অনন্য ফ্যাক্টরাইজেশন ডোমেন, সেখানে একটি অনন্য প্রকাশ পদ্ধতি আছে যেকোনো মূলদীও রাশিমালা P/Q এর জন্য যার P এবং Q বহুপদীর সর্বনিম্ন ডিগ্রি এবং Q কে মোনিক হিসেবে ধরা হয়। এটি যেভাবে পূর্ণ সংখ্যার ভগ্নাংশ গুলোকে সধারন গুণনীয়ক বাদ দিয়ে সর্বনিম্ন রাশি আকারে লেখা যায় তার অনুরূপ।

মূলদীও রাশিমালার এই ক্ষেত্রটিকে প্রকাশ করা হয় F(X)দিয়ে। এই ক্ষেত্রটি F ভাগ (অস্পষ্ট উপাদান) X এর ওপর নির্ভর করে তৈরি হয়েছে(ক্ষেত্র হিসেবে) হিসেবে ধরা হয়, কারণ F(X) এর F এবং উপাদান X নিয়ে কোন উপক্ষেত্র নেই।

জটিল মূলদীয় ফাংশন[সম্পাদনা]

জটিল বিশ্লেষণে, একটি মূলদীয় ফাংশন

হচ্ছে জটিল সহগের সাথে দুটি বহুপদীর অনুপাত, যেখানে Q শূন্য বহুপদী নয় এবং PQ এর কোন সাধারণ গুণনীয়ক নেই ( এটি f কে মধ্যবর্তী মান ০/০ থেকে বিরত রাখে). f এর ডোমেন এবং রেঞ্জ কে রাইমান গোলকে ধরা হয়, যার বিশেষ কোন কাজের প্রয়োজন পরে না ফাংশনের (যেখানে Q(z) হচ্ছে ০) মেরুর কাছে।

একটি মূলদীয় ফাংশনের ডিগ্রি হচ্ছে বহুপদী P এবং Q এর সর্বোচ্চ ডিগ্রির মানের সমান। যদিf এর সূচক হয় d, তাহলে সমীকরণ

এর d নির্দিষ্ট সমাধান আছে z ছাড়া w এর কিছু নির্দিষ্ট মানের জন্য যাকে ক্রান্তীয় মান বলা হয় যেখানে দুই বা অধিক সমাধান মিলিত হয়। ফাংশন f কে তাই চিন্তা করা যায় z- গোলকের ভিতর w- গোলকের d- ভাঁজ যুক্ত আচ্ছাদন।

১ ডিগ্রি যুক্ত মূলদীয় ফাংশনকে বলা হয় মবিয়াস রুপান্তকরণ এবং গঠন করে রাইমান গোলকের অটোমরফিসম দল। মূলদীয় ফাংশন মেরমরফিক ফাংশন প্রকাশের উদাহরণ।

বীজগাণিতিক বিভিন্নতার মাঝে মূলদীয় ফাংশনের ধারণা[সম্পাদনা]

বহুপদীর অনুরূপ, মূলদীয় রাশিমালাকেও ভাঙ্গা যায় n পর্যন্ত X1,..., Xn, ভগ্নাংশ F[X1,..., Xn]গ্রহণ করে, যাকে প্রকাশ করা হয় F(X1,..., Xn)দ্বারা।

মূলদীয় ফাংশনের অ্যাবস্ট্রাক্ট ধারণার একটি বৃহৎ সংস্করণ হচ্ছে বীজগাণিতিক জ্যামিতি। ফাংশন ক্ষেত্রের বীজগাণিতিক বিভিন্নতা V গঠিত হয় স্থানাংক চক্র V ( আরও সঠিকভাবে বললে, V এর জারিস্কি- ডেন্স এফাইন খোলা সেট) এর ভগ্নাংশের ক্ষেত্র দ্বারা। এর উপাদান f কে মনে করা হয় নিয়মিত ফাংশন হিসেবে বীজগণিতীও জ্যামিতির ও শূন্য খোলা সেট U এর উপর ভিত্তি করে এবং মরফিসমের প্রজেক্টিভ রেখাতেও একে দেখা যেতে পারে।

ব্যবহার[সম্পাদনা]

এই বিষয় গুলো প্রথম দেখা পাওয়া যায় বিদ্যালয়ের বীজগণিতে। আরও অগ্রসরমান গণিতের রিং তত্ত্ব, বিশেষ করে ক্ষেত্র বিস্তারের গঠনে এর গুরুত্বপূর্ণ ব্যবহার আছে। তারা অআরকেমেডিয়ান ক্ষেত্রেরও উদাহরণ প্রদান করে। (দেখুন আরকিমিডিয়ান বৈশিষ্ট্য)।

মূলদীয় ফাংশন ব্যবহার করা সাংখ্যিক বিশ্লেষণে ফাংশনের ইন্টারপোলেসন এবং আসন্ন মান নির্ণয়ে, উদাহরণ স্বরূপ হেনরি প্যাডে দ্বারা পরিচয় কৃত প্যাডের আসন্ন মাননির্ণয়। মূলদীয় ফাংশনের আসন্ন মান নির্ণয় কম্পিউটার বীজগণিত এবং অন্যান্য সাংখ্যিক সফটওয়ারে ভালো কাজ করে। একইরুপ বহুপদী, তাদেরকে সরাসরি বের করা যায় এবং একই সময়ে তারা বহুপদীর তুলনায় আরও বিস্তৃত আচরণ প্রকাশ করে।

মূলদীয় ফাংশন বিজ্ঞান ও প্রকৌশলবিদ্যার বিভিন্ন ক্ষেত্রে আসন্ন মান অথবা জটিল সমীকরণের নকশা তৈরিতে ব্যবহার করা হয় যেমনঃ

  1. পদার্থের ক্ষেত্র এবং বল
  2. বিশ্লেষণীয় রসায়নের স্পেক্ট্রোস্কোপিতে
  3. জৈব রসায়নের এনজাইম গতিবিদ্যায়
  4. তড়িৎ সার্কিটে
  5. বায়ুগতিবিদ্যায়
  6. ভিভো ঔষধ তৈরিতে
  7. অণু পরমাণুর ওয়েভ ফাংশন তৈরিতে
  8. আলোক ও চিত্রিকলায় ছবির রেজ্যোল্যুশন বাড়াতে এবং
  9. শ্রবণশক্তি এবং শব্দে।

আরও দেখুন[সম্পাদনা]

তথ্যসূত্র[সম্পাদনা]

বহিঃসংযোগ[সম্পাদনা]