কাঠামো গঠন

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
সরাসরি যাও: পরিভ্রমণ, অনুসন্ধান

কাঠামো গঠন (ইংরেজি: Structure formation) ভৌত বিশ্বতত্ত্বের একটি মৌলিক সমস্যা। মহাবৈশ্বিক মাইক্রোতরঙ্গ পটভূমি বিকিরণ পর্যবেক্ষণ করে মহাবিশ্ব সম্বন্ধে যা জানা গেছে, তা অনুসারে মহাবিশ্ব একটি উত্তপ্ত, ঘন, প্রায় সুষম একটি অবস্থা থেকে প্রায় ১৩.৭ বিলিয়ন বছর আগে যাত্রা শুরু করে। [১]

কিন্তু বর্তমানের আকাশের দিকে তাকালে আমরা বিভিন্ন মাপের কাঠামো দেখতে পাই, যাদের মধ্যে আছে তারা, গ্রহ, ছায়াপথ, ছায়াপথ স্তবক, ইত্যাদি এবং এদের মধ্যে বিদ্যমান বিশাল শূন্যতা। প্রায় সুষম আদি মহাবিশ্ব থেকে কী করে এগুলির উৎপত্তি হল? [২][৩][৪][৫]

সারাংশ[সম্পাদনা]

মহাবিশ্বের বর্তমান মডেলগুলি অনুসারে, দৃশ্যমান মহাবিশ্বের কাঠামো নিচের ধাপগুলি পার হয়ে গঠিত হয়েছে:

  • আদিতম মহাবিশ্ব: এই পর্যায়ে কোন কৌশল, যেমন মহাবৈশ্বিক স্ফীতি মহাবিশ্বের প্রাথমিক শর্তগুলি প্রতিষ্ঠা করে: সমসত্ত্বতা, আইসোট্রপি এবং সমতা (flatness)। [৩][৬]
  • আদিম প্লাজমা: এই পর্যায়ে প্রায় পুরোটা জুড়েই মহাবিশ্বে চলে বিকিরণ, এবং মুক্তভাবে প্রবহমান কাঠামোর কারণে মহাবিশ্ব মহাকর্ষীয়ভাবে বড় হতে পারে না। তা সত্ত্বেও গুরুত্বপূর্ণ বিবর্তন সংঘটিত হয়, যেমন মহাবিস্ফোরণ নিউক্লীয় সংশ্লেষণ আদিম মৌলগুলির সৃষ্টি করে এবং মহাবৈশ্বিক মাইক্রোতরঙ্গ পটভূমি বিকিরিত হয়। এই পর্যায়েই মহাবৈশ্বিক মাইক্রোতরঙ্গ পটভূমির বিস্তারিত অ্যানাইসোট্রপি কাঠামো সৃষ্টি হয়। [২]
  • কাঠামোর রৈখিক বৃদ্ধি: এই পর্যায়ে পদার্থ, বিশেষত কৃষ্ণ পদার্থ মহাবিশ্বকে দখল করে এবং মহাকর্ষীয় ভাঙন শুরু হওয়ার সুযোগ তৈরি হয়। মহাবৈশ্বিক স্ফীতির ফলে যে ক্ষুদ্র ক্ষুদ্র অসমসত্বতার সৃষ্টি হয়েছিল, সেগুলি এর ফলে আরও বড় আকার ধারণ করে, পদার্থ ঘন অঞ্চলগুলির দিকে আকৃষ্ট হয়, ফলে সেগুলি আরও ঘন হয় এবং হালকা অঞ্চলগুলি আরও হালকা হয়। এই পর্যায়ে মহাবিশ্বে বিদ্যমান ঘনত্বের অসমসত্বতা একটি সরল রৈখিক অন্তরক সমীকরণ দিয়ে ব্যাখ্যা করা সম্ভব। [৪][৭]
  • কাঠামোর অ-রৈখিক বৃদ্ধি: ঘন অঞ্চলগুলি আরও ঘন হতে থাকলে এগুলিকে আর রৈখিক সমীকরণের সাহায্যে ব্যাখ্যা করা যায় না। এই পর্যায়ে ছায়াপথ স্তবক ও ছায়াপথ হ্যালোর সৃষ্টি হয়। কিন্তু এই পর্যায়েও কেবল মহাকর্ষীয় বলগুলিই গুরুত্বপূর্ণ, কেন না তখনও কৃষ্ণ পদার্থই মহাবিশ্বের মূল বস্তু। [৮]
  • "Gastrophysical" বিবর্তন: বিবর্তনের এই শেষ ধাপে তড়িৎচুম্বকীয় বলগুলি গুরত্বপূর্ণ হয়ে ওঠে। ব্যারিয়নীয় পদার্থগুলি ঘনীভূত হয়ে স্তবকে তথা ছায়াপথ ও তারায় পরিণত হয়। কোন কোন ক্ষেত্রে, যেমন সক্রিয় ছায়াপথীয় নিউক্লিয়াস এবং কোয়েসারের ক্ষেত্রে নিউটনীয় তত্ত্ব ব্যর্থ হয় এবং সাধারণ আপেক্ষিকতা গুরত্বপূর্ণ হয়ে ওঠে। পর্যায়টির জটিলতার কারণে এর নামকরণ "gastrophysical" করা হয়েছে: বিভিন্ন জটিল ক্রিয়া, যেমন মহাকর্ষ, চৌম্বকীয় উদগতিবিদ্যা, এবং নিউক্লিয় বিক্রিয়াসমূহকে এর বিশ্লেষণে গণনায় ধরতে হয়। [৮]

তথ্যসূত্র[সম্পাদনা]

  1. D. N. Spergel et al. (২০০৭)। "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology"Astrophysical Journal Supplement Series 170 (2): 377–408। 
  2. Dodelson, Scott (২০০৩)। Modern Cosmology। Academic Press। আইএসবিএন ০-১২-২১৯১৪১-২ 
  3. Liddle, Andrew; David Lyth (২০০০)। Cosmological Inflation and Large-Scale Structure। Cambridge। আইএসবিএন ০-৫২১-৫৭৫৯৮-২  |coauthors= প্যারামিটার অজানা, উপেক্ষা করুন (সাহায্য)
  4. Padmanabhan, T. (১৯৯৩)। Structure formation in the universe। Cambridge University Press। আইএসবিএন ০-৫২১-৪২৪৮৬-০ 
  5. Peebles, P. J. E. (১৯৮০)। The Large-Scale Structure of the Universe। Princeton University Press। আইএসবিএন ০-৬৯১-০৮২৪০-৫ 
  6. Kolb, Edward; Michael Turner (১৯৮৮)। The Early Universe। Addison-Wesley। আইএসবিএন ০-২০১-১১৬০৪-৯  |coauthors= প্যারামিটার অজানা, উপেক্ষা করুন (সাহায্য)
  7. Wayne Hu and Scott Dodelson (২০০২)। "Cosmic microwave background anisotropies"Ann. Rev. Astron. Astrophys. 40: 171–216। 
  8. Edmund Bertschinger (১৯৯৮)। "Simulations of structure formation in the universe"Annual Review of Astronomy and Astrophysics 36: 599–654।