টেইলর ধারা

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
টেইলর বহুপদীর ডিগ্রি বৃদ্ধি পাবার সাথে সাথে এটি ফাংশনের সঠিক মানের দিকে অগ্রসর হয়, এই ছবিতে \sin x (কালোতে) এবং টেইলর ধারার আসন্নীকৃত মান,যখন ডিগ্রি1, 3, 5, 7, 9, 11 and 13.
সূচকীয় ফাংশন (নীল রঙ-এ), এবং ০-এ টেইলরের ধারার প্রথম n+1 পদের যোগফল (লাল রং-এ)।

গণিতে টেইলর ধারা হল কোন ফাংশনের অসীমতক সমষ্টির প্রকাশ, যা একটি নির্দিষ্ট বিন্দুতে এর বিভিন্ন মাত্রার অন্তরকসমূহের মান থেকে নির্ণয় করা হয়। এ ধারাটির নামকরণ করা হয়েছে ইংরেজ গণিতবিদ ব্রুক টেইলরের নামানুসারে। ধারাটি যদি শূণ্য কেন্দ্র করে নির্ণীত হয়, তখন একে ম্যাকলরিন ধারা বলা হয়। সাধারণত হিসাব করার সময় টেইলর সিরিজের সসীমসংখ্যক পদের সমষ্টি নেয়া হয়। টেইলর ধারাকে টেইলর বহুপদীর সীমা বিবেচনা করা যেতে পারে।

সংজ্ঞা[সম্পাদনা]

কোন বাস্তব বা জটিল ফাংশন ƒ(x) যা কিনা একটি বাস্তব বা জটিল সংখ্যা a এর সংলগ্ন মানে অসীমভাবে অন্তরকলনযোগ্য, তার টেইলর ধারা হল ঘাতের ধারা

f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots

এর চেয়ে সংবদ্ধ আকারে একে প্রকাশ করা যায় এভাবে

 \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n}

যেখানে n! নির্দেশ করে n এর ফ্যাক্টরিয়াল এবং ƒ (n)(a) নির্দেশ করে ƒ -এর nতম অন্তরক, a বিন্দুতে পরিমাপকৃত। ƒ এর শুণ্যতম অন্তরক হল ƒ নিজেই এবং (xa)0 ও 0! উভয়েরই সজ্ঞায়িত মান 1.

বিশেষ ক্ষেত্রে যখন a = 0, এ ধারাটিকে ম্যাকলরিন ধারা বলা হয়।

নোটস[সম্পাদনা]

তথ্যসূত্র[সম্পাদনা]

বহিঃসংযোগ[সম্পাদনা]