গাণিতিক প্রতীকের তালিকা

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
(গাণিতিক চিহ্নের সারণি থেকে ঘুরে এসেছে)

মূল চিহ্নসমূহের তালিকা[সম্পাদনা]

চিহ্ন
নাম
ব্যাখ্যা উদাহরণ
যেভাবে পড়তে হবে
বিষয়শ্রেণী
=
সমতা x = y অর্থ xy একই জিনিস অথবা মান ১ + ২ = ৩
সমান সমান; সমান
সবক্ষেত্রে


<>

!=
অসমান xy অর্থ x এবং y একই জিনিস নয় অথবা তাদের মান সমান নয় 1 ≠ 2
অসমান
সবক্ষেত্রে
<

>



অসমতা x < y অর্থ x y থেকে ক্ষুদ্রতর

x > y অর্থ x y থেকে বৃহত্তর

x ≪ y অর্থ x y থেকে অনেক ক্ষুদ্রতর

x ≫ y অর্থ x y থেকে অনেক বৃহত্তর
৩ < ৪
৫ > ৩

০.০০৭ ≪ ১০০০০০০০

ক্ষুদ্রতর, বৃহত্তর, অনেক ছোট, অনেক বড়
order theory


অসমতা x ≤ y অর্থ x y এর চেয়ে ছোট বা সমান

x ≥ y অর্থ x y এর চেয়ে বড় বা সমান
৩ ≤ ৪ এবং ৫ ≤ ৫
৫ ≥ ৪ এবং ৫ ≥ ৫
ক্ষুদ্রতর অথবা সমান, বৃহত্তর অথবা সমান
order theory
সমানুপাত yx অর্থ y = kx , কোন ধ্রুবক k এর জন্য যদি y = 2x, তাহলে yx
সমানুপাতিক
সবক্ষেত্রে
+
যোগ ৪ + ৬ অর্থ ৪ ও ৬ এর যোগফল ২ + ৭ = ৯
যোগ
গণিত
disjoint union A1 + A2 অর্থ the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 অর্থ the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 অর্থ the negative of the number 3. −(−5) = 5
negative ; minus
arithmetic
set-theoretic complement A − B অর্থ the set that contains all the elements of A that are not in B. {1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 অর্থ the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y অর্থ the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v অর্থ the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
÷

/
division 6 ÷ 3 or 6/3 অর্থ the division of 6 by 3. 2 ÷ 4 = .5

12/4 = 3
divided by
arithmetic
square root x অর্থ the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(iφ/2). √(-1) = i
the complex square root of; square root
complex numbers
| |
absolute value |x| অর্থ the distance in the real line (or the complex plane) between x and zero. |3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
absolute value of
numbers
!
factorial n! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
~
probability distribution X ~ D, অর্থ the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics




material implication AB অর্থ if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if .. then
propositional logic


material equivalence A ⇔ B অর্থ A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or
propositional logic, lattice theory



exclusive or The statement AB is true when either A or B, but not both, are true. AB অর্থ the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
universal quantification ∀ x: P(x) অর্থ P(x) is true for all x. ∀ n ∈ N: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) অর্থ there is at least one x such that P(x) is true. ∃ n ∈ N: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) অর্থ there is exactly one x such that P(x) is true. ∃! n ∈ N: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y অর্থ x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q অর্থ P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
সবক্ষেত্রে
{ , }
set brackets {a,b,c} অর্থ the set consisting of a, b, and c. N = {0, 1, 2, ...}
the set of ...
set theory
{ : }

{ | }
set builder notation {x : P(x)} অর্থ the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ N : n2 < 20} = {0, 1, 2, 3, 4}
the set of ... such that ...
set theory



{}
||empty set
অর্থ the set with no elements. {} অর্থ the same. {n ∈ N : 1 < n2 < 4} =
the empty set
set theory


set membership a ∈ S অর্থ a is an element of the set S; a  S অর্থ a is not an element of S. (1/2)−1 ∈ N

2−1  N
is an element of; is not an element of
সবক্ষেত্রে, set theory


subset (subset) A ⊆ B অর্থ every element of A is also element of B.

(proper subset) A ⊂ B অর্থ A ⊆ B but A ≠ B.
A ∩ BA; Q ⊂ R
is a subset of
set theory


superset A ⊇ B অর্থ every element of B is also element of A.

A ⊃ B অর্থ A ⊇ B but A ≠ B.
A ∪ BB; R ⊃ Q
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B অর্থ the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both".

(inclusive) A ∪ B অর্থ the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  A ∪ B = B (inclusive)
the union of ... and ...; union
set theory
set-theoretic intersection A ∩ B অর্থ the set that contains all those elements that A and B have in common. {x ∈ R : x2 = 1} ∩ N = {1}
intersected with; intersect
set theory
\
set-theoretic complement A \ B অর্থ the set that contains all those elements of A that are not in B. {1,2,3,4} \ {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) অর্থ the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
সবক্ষেত্রে
f:XY
function arrow fX → Y অর্থ the function f maps the set X into the set Y. Let fZ → N be defined by f(x) := x2.
from ... to
set theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory

N

natural numbers N অর্থ {0, 1, 2, 3, ...}, but see the article on natural numbers for a different convention. {|a| : a ∈ Z} = N
N
numbers

Z

integers Z অর্থ {..., −3, −2, −1, 0, 1, 2, 3, ...}. {a, -a : a ∈ N} = Z
Z
numbers

Q

rational numbers Q অর্থ {p/q : p,q ∈ Z, q ≠ 0}. 3.14 ∈ Q

π ∉ Q
Q
numbers

R

real numbers R অর্থ the set of real numbers. π ∈ R

√(−1) ∉ R
R
numbers

C

complex numbers C অর্থ {a + bi : a,b ∈ R}. i = √(−1) ∈ C
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C
C
integral calculus
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. limx→0 1/|x| = ∞
infinity
numbers
\pi
pi π is the ratio of a circle's circumference to its diameter. Its value is 3.1415.... A = πr² is the area of a circle with radius r
pi
Euclidean geometry
|| ||
norm ||x|| is the norm of the element x of a normed vector space. ||x+y|| ≤ ||x|| + ||y||
norm of; length of
linear algebra
summation

\sum_{k=1}^{n}{a_k} অর্থ a1 + a2 + ... + an.

\sum_{k=1}^{4}{k^2} = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over ... from ... to ... of
arithmetic
product

\prod_{k=1}^na_k অর্থ a1a2•••an.

\prod_{k=1}^4(k+2) = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over ... from ... to ... of
arithmetic
Cartesian product

\prod_{i=0}^{n}{Y_i} অর্থ the set of all (n+1)-tuples

(y0,...,yn).

\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3

the Cartesian product of; the direct product of
set theory
'
derivative f '(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x. If f(x) := x2, then f '(x) = 2x
... prime; derivative of ...
calculus
indefinite integral or antiderivative ∫ f(x) dx অর্থ a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of ...;; the antiderivative of ...
calculus
definite integral ab f(x) dx অর্থ the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from ... to ... of ... with respect to
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df / dxn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
calculus
partial derivative With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial derivative of
calculus
boundary M অর্থ the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy অর্থ x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ অর্থ x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
entailment AB অর্থ the sentence A entails the sentence B, that is every model in which A is true, B is also true. AA ∨ ¬A
entails
model theory
inference xy অর্থ y is derived from x. AB ⊢ ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
normal subgroup NG অর্থ that N is a normal subgroup of group G. Z(G) ◅ G
is a normal subgroup of
group theory
/
quotient group G/H অর্থ the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = টেমপ্লেট:0, ''b'', {a, b+a}, টেমপ্লেট:2''a'', ''b''+2''a''
mod
group theory
quotient set A/~ অর্থ the set of all ~ equivalence classes in A.
set theory
isomorphism GH অর্থ that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy অর্থ x is approximately equal to y π ≈ 3.14159
is approximately equal to
সবক্ষেত্রে
tensor product VU অর্থ the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
টেমপ্লেট:1, 2, 3, 4, {1, 2, 3, 4}, টেমপ্লেট:2, 4, 6, 8
tensor product of
linear algebra

বিশেষ চিহ্নসমূহ[সম্পাদনা]

Technical note: Due to technical limitations, many computers cannot display some of the special characters in this article. Such characters may be rendered as boxes, question marks, or other nonsense symbols, depending on your browser, operating system, and installed fonts. Even if you have ensured that your browser is interpreting the article as UTF-8 encoded and you have installed a font that supports a wide range of Unicode, such as Code2000, Arial Unicode MS, Lucida Sans Unicode or one of the free Unicode fonts, you may still need to use a different browser, as browser capabilities in this regard tend to vary.

আরও দেখুন[সম্পাদনা]

বহিঃসংযোগ[সম্পাদনা]

গাণিতিক অপারেটরের কিছু ইউনিকোড চার্ট:

ইউনিকোড ক্রস রেফারেন্স: