নির্ভুলতার হ্রাস (পরিভ্রমণ)

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন
একটি সাধারণ উদাহরণ সহ জ্যামিতিক ডিলিউশন অফ যথার্থ (জিডিওপি) বোঝা একটিতে কেউ দুটি ল্যান্ডমার্কের দূরত্ব পরিমাপ করেছে এবং পরিমাপ ব্যাসার্ধের সাথে দুটি বৃত্তের ছেদ হিসাবে তাদের বিন্দুটি প্লট করেছে। বিতে পরিমাপের কিছু ত্রুটির সীমা রয়েছে এবং তাদের আসল অবস্থান সবুজ অঞ্চলে যে কোনও জায়গায় থাকবে। সিতে পরিমাপের ত্রুটি একই রকম, তবে ল্যান্ডমার্কগুলির ব্যবস্থা করার কারণে তাদের অবস্থানের ত্রুটিটি যথেষ্ট বেড়েছে।

নির্ভুলতার হ্রাস বা জ্যামিতিক নির্ভুলতার হ্রাস, এটি পদবিক পরিমাপ নির্ভুলতার নেভিগেশন স্যাটেলাইট জ্যামিতির গাণিতিক প্রভাব হিসাবে ত্রুটি প্রচারকে নির্দিষ্ট করার জন্য স্যাটেলাইট নেভিগেশন এবং ভূতত্ত্ব ইঞ্জিনিয়ারিংয়ে ব্যবহৃত একটি শব্দ।

ভূমিকা[সম্পাদনা]

নির্ভুলতার হ্রাস লোরান-সি নেভিগেশন সিস্টেমের ব্যবহারকারীদের দ্বারা উদ্ভূত হয়েছিল।[১] জ্যামিতিক নির্ভুলতার হ্রাস-এর ধারণাটি পরিমাপের ত্রুটিগুলি চূড়ান্ত রাষ্ট্রীয় অনুমানকে কীভাবে প্রভাবিত করবে তা উল্লেখ করে। এটি হিসাবে সংজ্ঞায়িত করা যেতে পারে[২]:

ধারণাগতভাবে আপনি জ্যামিতিকভাবে একটি পরিমাপের ত্রুটিগুলি কল্পনা করতে পারেন যার ফলে Δ(পরিমাপ করা উপাত্ত) শব্দটি পরিবর্তিত হয়।পরিমাপ করা উপাত্ততে আদর্শভাবে ছোট পরিবর্তনগুলির ফলে আউটপুট লোকেশনে বড় পরিবর্তন হয় না। এই আদর্শের বিপরীতটি হল পরিস্থিতি যেখানে পরিমাপের ত্রুটিগুলির জন্য সমাধানটি খুব সংবেদনশীল। এই সূত্রটির ব্যাখ্যাটি চিত্রটিতে ডানদিকে প্রদর্শিত হয়েছে, গ্রহণযোগ্য এবং দুর্বল জিডিওপি সহ দুটি সম্ভাব্য পরিস্থিতি দেখায়।

জ্যামিতিক ডিলিউশন অফ প্রিসিশনের (জিডিওপি) জন্য দুর্বল জ্যামিতি সহ নেভিগেশন উপগ্রহ।

সাম্প্রতিককালে, এই শব্দটি জিপিএসের বিকাশ এবং গ্রহণের সাথে আরও ব্যাপক ব্যবহারে এসেছে। আয়নোস্ফেরিক[৩] এবং ট্রপোস্ফেরিক[৪] প্রভাব অবহেলা করে নেভিগেশন স্যাটেলাইটলির সংকেতটির একটি নির্দিষ্ট নির্ভুলতা রয়েছে। সুতরাং, আনুমানিক অবস্থান এবং সময়গুলির যথার্থতা নির্ধারণে আপেক্ষিক উপগ্রহ-গ্রহণকারী জ্যামিতি একটি বড় ভূমিকা পালন করে। কোনও রিসিভারের সাথে প্রদত্ত কোনও উপগ্রহের আপেক্ষিক জ্যামিতির কারণে, উপগ্রহের সিউডোরেঞ্জের যথার্থতাটি রিসিভারের দ্বারা পরিমাপক অবস্থানের চারটি মাত্রার প্রত্যেকটির সাথে সম্পর্কিত উপাদানকে অনুবাদ করে (অর্থাৎ, x, y, z এবং t)।রিসিভারের পরিপ্রেক্ষিতে একাধিক স্যাটেলাইটের যথার্থতা স্যাটেলাইটগুলির আপেক্ষিক অবস্থান অনুসারে একত্রিত করে গ্রাহক পরিমাপের প্রতিটি মাত্রায় যথার্থতার স্তর নির্ধারণ করে। যখন দৃশ্যমান নেভিগেশন উপগ্রহগুলি আকাশে একত্রে কাছাকাছি থাকে, তখন জ্যামিতিটি দুর্বল বলে এবং ডিওপি মান বেশি বলে মনে হয়; যখন অনেক দূরে থাকে, জ্যামিতি শক্তিশালী হয় এবং ডিওপি এর মান কম থাকে। বিভিন্ন কেন্দ্রের দুটি ওভারল্যাপিং রিং বা আনুনুলি বিবেচনা করুন। যদি তারা ডান কোণে ওভারল্যাপ হয়, তবে ওভারল্যাপের সর্বাধিক সীমাটি সমান্তরালভাবে ওভারল্যাপ করলে তার চেয়ে অনেক ছোট। সুতরাং একটি কম ডিওপি মান একটি ইউনিটের অবস্থান গণনা করতে ব্যবহৃত উপগ্রহের মধ্যে বৃহত্তর কৌণিক বিভাজনের কারণে আরও ভাল অবস্থানগত নির্ভুলতার প্রতিনিধিত্ব করে। কার্যকর ডিওপি বাড়াতে পারে এমন অন্যান্য কারণ হলো কাছের পর্বত বা বিল্ডিংগুলির মতো বাধা।

ডিওপি বিভিন্ন পৃথক পরিমাপ হিসাবে প্রকাশ করা যেতে পারে:

  • এইচডিওপি - নির্ভুলতার অনুভূমিক পাত (horizontal dilution of precision)
  • ভিডিওপি - নির্ভুলতার উল্লম্ব দুর্বলতা (vertical dilution of precision)
  • পিডিওপি - অবস্থান (3ডি) নির্ভুলতার হ্রাস (position (3D) dilution of precision)
  • টিডিওপি - সময় নির্ভুলতার মিশ্রণ (time dilution of precision)
  • জিডিওপি - নির্ভুলতার জ্যামিতিক পাতন (geometric dilution of precision)
জ্যামিতিক ডিলিউশন অফ প্রিসিশনের (জিডিওপি) জন্য ভাল জ্যামিতির সাথে নেভিগেশন উপগ্রহ।

এই মানগুলি ব্যবহারযোগ্য উপগ্রহের অবস্থানগুলি থেকে গাণিতিকভাবে অনুসরণ করে। সিগন্যাল রিসিভারগুলি এই পজিশনের (স্কাইপ্লট) পাশাপাশি ডিওপি মানগুলিকে প্রদর্শনের অনুমতি দেয়।

এই শব্দটি অন্যান্য অবস্থানের সিস্টেমে প্রয়োগ করা যেতে পারে যা বেশ কয়েকটি ভৌগলিক ব্যবধানযুক্ত সাইটগুলিকে নিয়োগ করে। শত্রু নির্গমনকারীদের (রাডার জ্যামার এবং রেডিও যোগাযোগ ডিভাইস) অবস্থানের গণনা করার সময় এটি বৈদ্যুতিন-পাল্টা-পাল্টা-প্রতিরোধের ব্যবস্থাগুলিতে (বৈদ্যুতিন যুদ্ধ) ঘটতে পারে। যেমন একটি ইন্টারফেরোমেট্রি কৌশল ব্যবহার করে নির্দিষ্ট জ্যামিতিক বিন্যাস সরবরাহ করতে পারে যেখানে অপ্রতুল কনফিগারেশনের কারণে দায়বদ্ধ হতে পারে না এমন স্বাধীনতার ডিগ্রি রয়েছে।

অবস্থান ত্রুটির উপর উপগ্রহের জ্যামিতির প্রভাবকে জ্যামিতিক পাতন অব নির্ভুলতা (জিডিওপি) বলা হয় এবং এটি পরিসীমা ত্রুটির সাথে অবস্থান ত্রুটির অনুপাত হিসাবে প্রায় ব্যাখ্যা করা হয়। কল্পনা করুন যে পিরামিডের ডগায় রিসিভারের সাথে চারটি উপগ্রহে যোগদান করে রেখা দ্বারা একটি বর্গাকার পিরামিড গঠিত হয়। পিরামিডের ভলিউম বৃহত্তর, জিডিওপি-র মান আরও ভাল (কম) হবে; এর আয়তন যত কম হবে, জিডিওপি-র মান আরও খারাপ (উচ্চতর) হবে। একইভাবে, উপগ্রহের সংখ্যা যত বেশি হবে, জিডিওপি-র মান আরও ভাল।

ডিওপি মানগুলির অর্থ[সম্পাদনা]

ডিওপি

মান

মান বর্ণনা
আদর্শ সর্বকালের সর্বোচ্চ সম্ভাব্য নির্ভুলতার দাবিতে অ্যাপ্লিকেশনগুলির জন্য সর্বাধিক সম্ভব আত্মবিশ্বাসের স্তর ব্যবহার করা।
১-২ দুর্দান্ত এই আত্মবিশ্বাসের স্তরে, অবস্থানীয় পরিমাপগুলি সবচেয়ে সংবেদনশীল অ্যাপ্লিকেশন ব্যতীত অন্য সকলের জন্য যথেষ্ট যথাযথ হিসাবে বিবেচিত হয়।
২-৫ ভালো এমন একটি স্তর প্রতিনিধিত্ব করে যা সঠিক সিদ্ধান্ত নেওয়ার জন্য ন্যূনতম উপযুক্ত চিহ্নিত করে। অবস্থানগত পরিমাপ ব্যবহারকারীর কাছে নির্ভরযোগ্য ইন-রুটে নেভিগেশন পরামর্শ দেওয়ার জন্য ব্যবহার করা যেতে পারে।
৫-১০ মাঝারি অবস্থানগত পরিমাপ গণনার জন্য ব্যবহার করা যেতে পারে তবে স্থির মানটি এখনও উন্নত হতে পারে। আকাশের আরও খোলা দৃশ্যের প্রস্তাব দেওয়া হচ্ছে।
১০-২০ যথেষ্ট একটি কম আত্মবিশ্বাসের স্তরের প্রতিনিধিত্ব করে। অবস্থানের পরিমাপগুলি কেবল বর্তমান অবস্থানের খুব রুক্ষ অনুমান নির্দেশ করতে বাতিল বা ব্যবহার করা উচিত।
>২০ নিম্ন এই স্তরে, পরিমাপগুলি ৬ মিটার নির্ভুল ডিভাইস (৫০ ডিওপি × ৬ মিটার) সহ ৩০০ মিটারের বেশি দ্বারা ভুল হয় এবং তা ফেলে দেওয়া উচিত।

ডিওপি ফ্যাক্টরগুলি হলো প্যারামিটারগুলির কোভেরিয়েন্স ম্যাট্রিক্সের তির্যক উপাদানগুলির ক্রিয়া যা কোনও গ্লোবাল বা স্থানীয় জিওডেটিক ফ্রেমে প্রকাশিত হয়।

ডিওপি মানগুলির গণনা[সম্পাদনা]

ডিওপি কম্পিউটিংয়ের প্রথম পদক্ষেপ হিসাবে, রিসিভার থেকে স্যাটেলাইট ১এ ইউনিট ভেক্টরগুলি বিবেচনা করুন: DOP Value 1.svgযেখানে DOP Value 2.svg এবং যেখানে x, y এবং z প্রাপকের অবস্থান এবং xi, yi এবং zi স্যাটেলাইট ১ এর অবস্থান বোঝায়। ম্যাট্রিক্স, এ গঠন করুন, যা (৪ পরিসরের পরিমাপের অবশিষ্টাংশের সমীকরণের জন্য) হলো:

DOP Value 3.svg

এ এর প্রতিটি সারির প্রথম তিনটি উপাদান হলো একক ভেক্টরের উপাদানগুলি রিসিভার থেকে নির্দেশিত স্যাটেলাইটের কাছে। যদি চতুর্থ কলামের উপাদানগুলি সি হয় যা আলোর গতি নির্দেশ করে তবে ফ্যাক্টর (সময় হ্রাস) সর্বদা 1 থাকে ম্যাট্রিক্স, Q সূচিত করুন[৫]:

সাধারণভাবে: DOP Value 5.svgযেখানে Jx সেন্সর পরিমাপ অবশিষ্টাংশের সমীকরণের জ্যাকবিয়ান fi(x,d) = 0, অজানা শ্রদ্ধার সাথে x; Jd পরিমাপ পরিমাণের সাথে সম্মান সঙ্গে সেন্সর পরিমাপ অবশিষ্টাংশ সমীকরণের জ্যাকবীয় হয় d এবং Cd পরিমাপযুক্ত পরিমাণে শব্দের জন্য পারস্পরিক সম্পর্ক ম্যাট্রিক্স। পূর্ববর্তী ক্ষেত্রে ৪ পরিসীমা পরিমাপ অবশিষ্টাংশ সমীকরণ: 1 math.svg, 2 Math.svg, T=ct, Ti=cti, 3 Math.svg, 4 Math.svg, Jx = A, Jd = -I এবং বিভিন্নটির জন্য পরিমাপের শোরগোলগুলি Ti আমি স্বতন্ত্র বলে ধরে নিয়েছি যা এটি তৈরি করে Cd = I, Q এর এই সূত্রটি বর্তমান সমাধান সম্পর্কে সেন্সর পরিমাপ অবশিষ্টাংশের সমীকরণের একটি লিনিয়ারাইজড সংস্করণে সর্বোত্তম রৈখিক নিরপেক্ষ অনুমান প্রয়োগ করা থেকে উদ্ভূত হয় 5 Math.svg B.L.U.E এর ক্ষেত্রে বাদে Cd ডিওপি-তে ব্যবহৃত গোলমালের সাথে সম্পর্কিত ম্যাট্রিক্সের চেয়ে একটি শব্দের কোভরিয়েন্স ম্যাট্রিক্স এবং ডিওপি এই প্রতিস্থাপনের কারণটি আপেক্ষিক ত্রুটি অর্জন করে। যেখানে Cd একটি শব্দ কোভেরিয়েন্স ম্যাট্রিক্স, Q পরিমাপক পরিমাণে শব্দের কারণে অজানাতে শব্দের কোভরিয়েন্স এর ম্যাট্রিক্সের একটি অনুমান। এটি প্রথম অর্ডার দ্বিতীয় মুহুর্তের (এফ.ও.এস.এম) অনিশ্চয়তা পরিমানের কৌশল দ্বারা প্রাপ্ত অনুমান যা ১৯৮০ এর দশকে শিল্পের রাষ্ট্র ছিল। আদেশের জন্য এফ.এস.এম. তত্ত্বটি কঠোরভাবে প্রযোজ্য হতে হয়, হয় ইনপুট শব্দ বিতরণকে গউসিয়ান হতে হবে বা পরিমাপ শোনার স্ট্যান্ডার্ড বিচ্যুতির সমাধানের নিকটে আউটপুট পরিবর্তনের হারের তুলনায় ছোট তুলনামূলক হওয়া দরকার। এই প্রসঙ্গে, দ্বিতীয় মানদণ্ডটি সাধারণত সন্তুষ্ট একটি।

এটি (অর্থাৎ ৪ টি পরিসীমা পরিমাপের অবশিষ্টাংশের সমীকরণের জন্য) গণনা[৬] এর সাথে সামঞ্জস্য হয় যেখানে ওজন ম্যাট্রিক্স, P=(JdCdJTd)-1 পরিচয় ম্যাট্রিক্সে সেট করা হয়েছে।

Q এর উপাদানগুলি হিসাবে মনোনীত করা হয়:

DOP Value 6.svg

পিডিওপি, টিডিওপি এবং জিডিওপি এর দ্বারা প্রদত্ত:

DOP Value 7.svg

স্যাটেলাইট অবস্থান নির্ধারণের নীতিগুলির ১.৪.৯ অনুচ্ছেদে একমত আরও সাধারণভাবে, জিডিওপি হলো ট্রেসের বর্গমূল Q ম্যাট্রিক্স।

নির্ভুলতার অনুভূমিক পাতন, 6 Math.svg এবং নির্ভুলতার উল্লম্ব হ্রাস, 7 Math.svg উভয়ই ব্যবহৃত সমন্বিত সিস্টেমের উপর নির্ভরশীল। স্থানীয় দিগন্ত সমতল এবং স্থানীয় উল্লম্বের সাথে সামঞ্জস্য করতে, x, y এবং z এর একটি উত্তর, পূর্ব, নীচে স্থানাঙ্ক ব্যবস্থা বা পূর্ব, উত্তর, আপ সমন্বয় ব্যবস্থাতে অবস্থান বোঝাতে হবে।

তথ্যসূত্র[সম্পাদনা]

  1. রিচার্ড বি ল্যাংলি (মে 1999)। "নির্ভুলতার নির্ভুলতা" (পিডিএফ)। জিপিএস ওয়ার্ল্ড। ২০১১-১১-১২ পুনরুদ্ধার করা হয়েছে।
  2. দুদেক, গ্রেগরি; জেনকিন, মাইকেল (২০০০) মোবাইল রোবোটিক্সের গণনা মূলনীতি
  3. পল কিন্টনার, কর্নেল বিশ্ববিদ্যালয়; টড হামফ্রেস; টেক্সাস-অস্টিন বিশ্ববিদ্যালয়; জোয়ান হিংস; কর্নেল বিশ্ববিদ্যালয় (জুলাই-আগস্ট ২০০৯) "জিএনএসএস এবং আয়নোস্ফেরিক সিনটিলেশন: পরবর্তী সোলার সর্বাধিক বেঁচে থাকা কীভাবে"।
  4. জিপিএস ত্রুটি (ছাঁটাই টিউটোরিয়াল)
  5. "সংরক্ষণাগারভুক্ত অনুলিপি"। ১৩ সেপ্টেম্বর ২০১৬ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১০ সেপ্টেম্বর ২০২০ 
  6. "স্যাটেলাইট অবস্থান নির্ধারণের নীতিগুলির ১.৪.২"