কৃষিতে জলবায়ু পরিবর্তনের প্রভাব: সংশোধিত সংস্করণের মধ্যে পার্থক্য

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
বিষয়বস্তু বিয়োগ হয়েছে বিষয়বস্তু যোগ হয়েছে
সম্পাদনা সারাংশ নেই
ট্যাগ: দৃশ্যমান সম্পাদনা মোবাইল সম্পাদনা মোবাইল ওয়েব সম্পাদনা উচ্চতর মোবাইল সম্পাদনা
সম্পাদনা সারাংশ নেই
ট্যাগ: দৃশ্যমান সম্পাদনা মোবাইল সম্পাদনা মোবাইল ওয়েব সম্পাদনা উচ্চতর মোবাইল সম্পাদনা
৪০ নং লাইন: ৪০ নং লাইন:
=== গবাদি পশুর ওপর তাপের প্রভাব ===
=== গবাদি পশুর ওপর তাপের প্রভাব ===
[[File:Lallo_2018_Jamaica_livestock_THI.png|সংযোগ=https://en.wikipedia.org/wiki/File:Lallo_2018_Jamaica_livestock_THI.png|থাম্ব|বিশ্বব্যাপী জলবায়ু পরিবর্তনের তীব্রতা বৃদ্ধির ফলে জ্যামাইকার খামারের পশুদের তাপীয় সূচক (thermal heat index) আরও বেড়ে যায়। উচ্চ তাপীয় সূচক তাপজনিত চাপের বহুল ব্যবহৃত সূচকগুলোর মধ্যে একটি।<ref name="Lallo2018">{{cite journal|last2=Cohen|first2=Jane|date=24 May 2018|title=Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean|url=https://link.springer.com/article/10.1007/s10113-018-1359-x|pages=2329–2340|language=en|doi=10.1007/s10113-018-1359-x|doi-access=free|last1=Lallo|first1=Cicero H. O.|last3=Rankine|first3=Dale|last4=Taylor|first4=Michael|last5=Cambell|first5=Jayaka|last6=Stephenson|first6=Tannecia|journal=Regional Environmental Change|volume=18|issue=8|s2cid=158167267}}</ref>]]
[[File:Lallo_2018_Jamaica_livestock_THI.png|সংযোগ=https://en.wikipedia.org/wiki/File:Lallo_2018_Jamaica_livestock_THI.png|থাম্ব|বিশ্বব্যাপী জলবায়ু পরিবর্তনের তীব্রতা বৃদ্ধির ফলে জ্যামাইকার খামারের পশুদের তাপীয় সূচক (thermal heat index) আরও বেড়ে যায়। উচ্চ তাপীয় সূচক তাপজনিত চাপের বহুল ব্যবহৃত সূচকগুলোর মধ্যে একটি।<ref name="Lallo2018">{{cite journal|last2=Cohen|first2=Jane|date=24 May 2018|title=Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean|url=https://link.springer.com/article/10.1007/s10113-018-1359-x|pages=2329–2340|language=en|doi=10.1007/s10113-018-1359-x|doi-access=free|last1=Lallo|first1=Cicero H. O.|last3=Rankine|first3=Dale|last4=Taylor|first4=Michael|last5=Cambell|first5=Jayaka|last6=Stephenson|first6=Tannecia|journal=Regional Environmental Change|volume=18|issue=8|s2cid=158167267}}</ref>]]
সাধারণভাবে, গৃহপালিত পশুদের জন্য আদর্শ তাপমাত্রার সীমা ১০ থেকে ৩০ ডিগ্রি সেলসিয়াসের (৫০ থেকে ৮৬ ডিগ্রি ফারেনহাইট) মধ্যে। জলবায়ু পরিবর্তন যেমন বিশ্বের শীতল অঞ্চলে বসবাসরত মানুষের জন্য সামগ্রিক আরাম বৃদ্ধি করবে বলে আশা করা হচ্ছে, তেমনি ঐসব এলাকার গবাদি পশুদের শীতকাল আরও সহনীয় হবে। তবে, বিশ্বজুড়ে গ্রীষ্মকালীন তাপমাত্রা বৃদ্ধি এবং অধিকতর ঘন ঘন ও তীব্র তাপপ্রবাহ স্পষ্টভাবে নেতিবাচক প্রভাব ফেলবে, ফলে গবাদি পশুদের তাপজনিত চাপের ঝুঁকি উল্লেখযোগ্যভাবে বেড়ে যাবে। জলবায়ু পরিবর্তনের সবচেয়ে তীব্র নিঃসরণ ও সর্বোচ্চ উষ্ণায়নের (SSP5-8.5) অবস্থায়, “নিম্ন অক্ষাংশের গরু, ভেড়া, ছাগল, শূকর এবং পোল্ট্রি বছরে ৭২-১৩৬ দিন চরম উচ্চ তাপমাত্রা এবং আদ্রতা থেকে উদ্ভূত চাপের সম্মুখীন হবে।”
সাধারণভাবে, গৃহপালিত পশুদের জন্য আদর্শ তাপমাত্রার সীমা ১০ থেকে ৩০ ডিগ্রি সেলসিয়াসের (৫০ থেকে ৮৬ ডিগ্রি ফারেনহাইট) মধ্যে।<ref name="AR6_WGII_Chapter5">Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter05.pdf Chapter 5: Food, Fibre and Other Ecosystem Products]. In [https://www.ipcc.ch/report/ar6/wg2/ Climate Change 2022: Impacts, Adaptation and Vulnerability] [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012</ref>{{rp|747}} জলবায়ু পরিবর্তন যেমন বিশ্বের শীতল অঞ্চলে বসবাসরত মানুষের জন্য সামগ্রিক আরাম বৃদ্ধি করবে বলে আশা করা হচ্ছে, তেমনি ঐসব এলাকার গবাদি পশুদের শীতকাল আরও সহনীয় হবে।<ref name="Lacetera20182">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref> তবে, বিশ্বজুড়ে গ্রীষ্মকালীন তাপমাত্রা বৃদ্ধি এবং অধিকতর ঘন ঘন ও তীব্র তাপপ্রবাহ স্পষ্টভাবে নেতিবাচক প্রভাব ফেলবে, ফলে গবাদি পশুদের তাপজনিত চাপের ঝুঁকি উল্লেখযোগ্যভাবে বেড়ে যাবে। জলবায়ু পরিবর্তনের সবচেয়ে তীব্র নিঃসরণ ও সর্বোচ্চ উষ্ণায়নের (SSP5-8.5) অবস্থায়, “নিম্ন অক্ষাংশের গরু, ভেড়া, ছাগল, শূকর এবং পোল্ট্রি বছরে ৭২-১৩৬ দিন চরম উচ্চ তাপমাত্রা এবং আদ্রতা থেকে উদ্ভূত চাপের সম্মুখীন হবে।”<ref name="AR6_WGII_Chapter52">Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter05.pdf Chapter 5: Food, Fibre and Other Ecosystem Products]. In [https://www.ipcc.ch/report/ar6/wg2/ Climate Change 2022: Impacts, Adaptation and Vulnerability] [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012</ref>{{rp|717}}


ক্যারিবিয়ান অঞ্চলের প্রতিনিধি হিসেবে বিবেচিত জ্যামাইকায়, লেয়ার মুরগী বাদে বর্তমান জলবায়ুতে সব গবাদি পশুই “খুব মারাত্মক” তাপ-জনিত চাপের সম্মুখীন হয়। গরমের পাঁচ মাস এবং শরতের প্রথমদিকে শূকরগুলো প্রতিদিন কমপক্ষে একবার এই তাপ-জনিত চাপের সম্মুখীন হয়। রোমন্থনকারী পশু (ruminants - যেমন, গরু, ছাগল ইত্যাদি) এবং ব্রয়লার মুরগী কেবল শীতকালে প্রতিদিনের "খুব মারাত্মক" তাপ-জনিত চাপ এড়াতে পারে। এটা ভবিষ্যৎবাণী করা হয়েছে যে ১.৫ ডিগ্রি সেলসিয়াস (২.৭ ডিগ্রি ফারেনহাইট) বৈশ্বিক উষ্ণায়নে রোমন্থনকারীপশু এবং ব্রয়লার মুরগীদের জন্য “খুব মারাত্মক” তাপ-জনিত চাপ একটি নিত্যদিনের ঘটনা হয়ে উঠবে। ২ ডিগ্রি সেলসিয়াস (৩.৬ ডিগ্রিফারেনহাইট) উষ্ণায়নে, এটি অধিক সময় জুড়ে অনুভূত হবে, এবং ক্যারিবিয়ান অঞ্চলে গবাদিপশু উৎপাদনের জন্য নিবিড় শীতলীকরণব্যবস্থা সম্ভবত অপরিহার্য হয়ে পড়বে। ২.৫ ডিগ্রি সেলসিয়াস (৪.৫ ডিগ্রি ফারেনহাইট) উষ্ণায়নে, কেবল লেয়ারমুরগী শীতকালীন মাসগুলোতে প্রতিদিনের “খুব মারাত্মক” তাপ-জনিত চাপ এড়াতে পারবে।
ক্যারিবিয়ান অঞ্চলের প্রতিনিধি হিসেবে বিবেচিত জ্যামাইকায়, লেয়ার মুরগী বাদে বর্তমান জলবায়ুতে সব গবাদি পশুই “খুব মারাত্মক” তাপ-জনিত চাপের সম্মুখীন হয়। গরমের পাঁচ মাস এবং শরতের প্রথমদিকে শূকরগুলো প্রতিদিন কমপক্ষে একবার এই তাপ-জনিত চাপের সম্মুখীন হয়। রোমন্থনকারী পশু (ruminants - যেমন, গরু, ছাগল ইত্যাদি) এবং ব্রয়লার মুরগী কেবল শীতকালে প্রতিদিনের "খুব মারাত্মক" তাপ-জনিত চাপ এড়াতে পারে। এটা ভবিষ্যৎবাণী করা হয়েছে যে ১.৫ ডিগ্রি সেলসিয়াস (২.৭ ডিগ্রি ফারেনহাইট) বৈশ্বিক উষ্ণায়নে রোমন্থনকারীপশু এবং ব্রয়লার মুরগীদের জন্য “খুব মারাত্মক” তাপ-জনিত চাপ একটি নিত্যদিনের ঘটনা হয়ে উঠবে। ২ ডিগ্রি সেলসিয়াস (৩.৬ ডিগ্রিফারেনহাইট) উষ্ণায়নে, এটি অধিক সময় জুড়ে অনুভূত হবে, এবং ক্যারিবিয়ান অঞ্চলে গবাদিপশু উৎপাদনের জন্য নিবিড় শীতলীকরণব্যবস্থা সম্ভবত অপরিহার্য হয়ে পড়বে। ২.৫ ডিগ্রি সেলসিয়াস (৪.৫ ডিগ্রি ফারেনহাইট) উষ্ণায়নে, কেবল লেয়ারমুরগী শীতকালীন মাসগুলোতে প্রতিদিনের “খুব মারাত্মক” তাপ-জনিত চাপ এড়াতে পারবে।<ref name="Lallo20182">{{cite journal|last2=Cohen|first2=Jane|date=24 May 2018|title=Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean|url=https://link.springer.com/article/10.1007/s10113-018-1359-x|pages=2329–2340|language=en|doi=10.1007/s10113-018-1359-x|doi-access=free|last1=Lallo|first1=Cicero H. O.|last3=Rankine|first3=Dale|last4=Taylor|first4=Michael|last5=Cambell|first5=Jayaka|last6=Stephenson|first6=Tannecia|journal=Regional Environmental Change|volume=18|issue=8|s2cid=158167267}}</ref>
[[File:Lacetera_2018_heat_livestock_diagram.jpeg|সংযোগ=https://en.wikipedia.org/wiki/File:Lacetera_2018_heat_livestock_diagram.jpeg|বাম|থাম্ব|প্রাণিসম্পদের উপর তাপ ও চাপের প্রভাব।<ref name="Lacetera2018">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref>]]
[[File:Lacetera_2018_heat_livestock_diagram.jpeg|সংযোগ=https://en.wikipedia.org/wiki/File:Lacetera_2018_heat_livestock_diagram.jpeg|বাম|থাম্ব|প্রাণিসম্পদের উপর তাপ ও চাপের প্রভাব।<ref name="Lacetera2018">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref>]]
যখন গবাদি পশুর শরীরের তাপমাত্রা স্বাভাবিক তাপমাত্রার ৩-৪ ডিগ্রি সেন্টিগ্রেড (৫.৪-৭.২ ডিগ্রি ফারেনহাইট) উপরে উঠে যায়, তা খুব শীঘ্রই “হিট স্ট্রোক, হিট এক্সজশন, হিট সিনকোপ, হিট ক্র্যাম্পস, এবং অবশেষে অঙ্গ বৈকল্যে” পরিণত হয়। বছরের সবচাইতে উষ্ণ মাসগুলিতে এবং তাপপ্রবাহ চলাকালে গবাদি পশুর মৃত্যুহার অধিক বলে জানা যায়।২০০৩ সালের ইউরোপীয় তাপপ্রবাহের সময়, উদাহরণস্বরূপ, হাজারের অধিক শূকর,পোল্ট্রি এবং খরগোশ কেবল ফ্রান্সের ব্রিটেনি এবং পেইস-দে-লা-ল্যয়ের অঞ্চলেমারা গিয়েছিল।
যখন গবাদি পশুর শরীরের তাপমাত্রা স্বাভাবিক তাপমাত্রার ৩-৪ ডিগ্রি সেন্টিগ্রেড (৫.৪-৭.২ ডিগ্রি ফারেনহাইট) উপরে উঠে যায়, তা খুব শীঘ্রই “হিট স্ট্রোক, হিট এক্সজশন, হিট সিনকোপ, হিট ক্র্যাম্পস, এবং অবশেষে অঙ্গ বৈকল্যে” পরিণত হয়। বছরের সবচাইতে উষ্ণ মাসগুলিতে এবং তাপপ্রবাহ চলাকালে গবাদি পশুর মৃত্যুহার অধিক বলে জানা যায়।২০০৩ সালের ইউরোপীয় তাপপ্রবাহের সময়, উদাহরণস্বরূপ, হাজারের অধিক শূকর,পোল্ট্রি এবং খরগোশ কেবল ফ্রান্সের ব্রিটেনি এবং পেইস-দে-লা-ল্যয়ের অঞ্চলে মারা গিয়েছিল।<ref name="Lacetera20183">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref>


গবাদি পশু তাপজনিত চাপ থেকে একাধিক উপ-মারাত্মক প্রভাব ভোগ করতে পারে, যেমন দুধ উৎপাদন কমে যাওয়া। তাপমাত্রা ৩০°C (৮৬°F) ছাড়িয়ে গেলে, গরু, ভেড়া, ছাগল, শূকর এবং মুরগী তাপমাত্রা প্রতি ডিগ্রি বাড়ার সাথেসাথে ৩-৫% কম খাদ্য গ্রহণ করতে শুরু করে। এখননি সময়ে, তারা শ্বাস-প্রশ্বাস এবংঘামার হার বাড়িয়ে দেয়, এবং এই সম্মিলিত প্রতিক্রিয়াগুলি বিপাকীয় ব্যাধির দিকে ধাবিত করে। একটি উদাহরণহল কিটোসিস (ketosis); এই অবস্থায় পশুর দেহ দ্রুতgতর নিজের চর্বিজাতীয় সঞ্চয় বিশ্লেষন করতে থাকে। তাপজনিত চাপ অ্যান্টি-অক্সিড্যান্ট এনজাইমের ক্রিয়াশীলতা বাড়িয়ে দেয়, যার ফলে অক্সিড্যান্ট এবং অ্যান্টি-অক্সিড্যান্টঅণুরমধ্যে ভারসাম্যহীনতা সৃষ্টি হতে পারে, যাকে অক্সিডেটিভ চাপ বলে। ক্রোমিয়ামের মতো অ্যান্টি-অক্সিড্যান্টযুক্ত খাদ্য গ্রহণ অক্সিডেটিভ চাপ মোকাবেলায় সাহায্য করতেপারে এবং অন্যান্য সংক্রামক অবস্থার দিকে যাওয়া থেকে আটকাতে পারে, তবুও কেবলসীমিত ভাবে।
গবাদি পশু তাপজনিত চাপ থেকে একাধিক উপ-মারাত্মক প্রভাব ভোগ করতে পারে, যেমন দুধ উৎপাদন কমে যাওয়া। তাপমাত্রা ৩০°C (৮৬°F) ছাড়িয়ে গেলে, গরু, ভেড়া, ছাগল, শূকর এবং মুরগী তাপমাত্রা প্রতি ডিগ্রি বাড়ার সাথেসাথে ৩-৫% কম খাদ্য গ্রহণ করতে শুরু করে।<ref name="Bett2017">{{cite journal|last2=Kiunga|first2=P.|date=23 January 2017|title=Effects of climate change on the occurrence and distribution of livestock diseases|url=https://www.sciencedirect.com/science/article/abs/pii/S0167587716306316|pages=119–129|language=en|doi=10.1016/j.prevetmed.2016.11.019|pmid=28040271|last1=Bett|first1=B.|last3=Gachohi|first3=J.|last4=Sindato|first4=C.|last5=Mbotha|first5=D.|last6=Robinson|first6=T.|last7=Lindahl|first7=J.|last8=Grace|first8=D.|journal=Preventive Veterinary Medicine|volume=137|issue=Pt B}}</ref> একই সময়ে, তারা শ্বাস-প্রশ্বাস এবংঘামার হার বাড়িয়ে দেয়, এবং এই সম্মিলিত প্রতিক্রিয়াগুলি বিপাকীয় ব্যাধির দিকে ধাবিত করে। একটি উদাহরণ হল কিটোসিস (ketosis); এই অবস্থায় পশুর দেহ দ্রুততর নিজের চর্বিজাতীয় সঞ্চয় বিশ্লেষন করতে থাকে।<ref name="Lacetera20184">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref> তাপজনিত চাপ অ্যান্টি-অক্সিড্যান্ট এনজাইমের ক্রিয়াশীলতা বাড়িয়ে দেয়, যার ফলে অক্সিড্যান্ট এবং অ্যান্টি-অক্সিড্যান্টঅণুরমধ্যে ভারসাম্যহীনতা সৃষ্টি হতে পারে, যাকে অক্সিডেটিভ চাপ বলে। ক্রোমিয়ামের মতো অ্যান্টি-অক্সিড্যান্টযুক্ত খাদ্য গ্রহণ অক্সিডেটিভ চাপ মোকাবেলায় সাহায্য করতেপারে এবং অন্যান্য সংক্রামক অবস্থার দিকে যাওয়া থেকে আটকাতে পারে, তবুও কেবলসীমিত ভাবে।<ref>{{cite journal|last2=Abd El-Hack|first2=Mohamed E.|date=19 December 2019|title=Potential use of chromium to combat thermal stress in animals: A review|url=https://www.sciencedirect.com/science/article/abs/pii/S0048969719359923|page=135996|language=en|doi=10.1016/j.scitotenv.2019.135996|pmid=31865090|doi-access=free|last1=Bin-Jumah|first1=May|last3=Abdelnour|first3=Sameh A.|last4=Hendy|first4=Yasmeen A.|last5=Ghanem|first5=Hager A.|last6=Alsafy|first6=Sara A.|last7=Khafaga|first7=Asmaa F.|last8=Noreldin|first8=Ahmed E.|last9=Shaheen|first9=Hazem|last10=Samak|first10=Dalia|last11=Momenah|first11=Maha A.|last12=Allam|first12=Ahmed A.|last13=AlKahtane|first13=Abdullah A.|last14=Alkahtani|first14=Saad|last15=Abdel-Daim|first15=Mohamed M.|last16=Aleya|first16=Lotfi|journal=Science of the Total Environment|volume=707|s2cid=209447429}}</ref>


তাপ-জনিত চাপে থাকা পশুদের রোগ প্রতিরোধ ব্যবস্থাও দুর্বল হয়ে পড়ে বলে জানা যায়, ফলে তারা বিভিন্ন সংক্রমণের প্রতি অধিক সংবেদনশীল হয়ে ওঠে। একইভাবে, গবাদি পশুর টিকাকরণও তাপ-জনিত চাপের কারণে কম কার্যকর হতে পারে।একজন্য এখননিপর্যন্তগবেষকরা তাপ-জনিত চাপ পরিমাপ করতেন অসামঞ্জস্যপূর্ণ সংজ্ঞা ব্যবহার করে; বিদ্যমান গবাদি পশু মডেলদের পরীক্ষামূলক তথ্যের সাথে সীমিতসম্পর্ক রয়েছে। বিশেষভাবে, যেহেতু গরুর মতো গবাদি পশু তাদের দিনের অনেকটা সময় শুয়ে কাটায়, একটি ব্যাপক তাপ-জনিত চাপ নিরূপণের জন্য মাটিরতাপমাত্রাকেও গণনায় ধরতে হবে। কিন্তু, এটা বিবেচনায়ধরেনি এমন প্রথমমডেলটি মাত্র ২০২১সালে প্রকাশিত হয়েছে ; এটাআজও পদ্ধতিগতভাবে শরীরেরতাপমাত্রা ওভারএস্টিমেটকরে এবং শ্বাস-প্রশ্বাসের হার আন্ডারএস্টিমেট করে।
তাপ-জনিত চাপে থাকা পশুদের রোগ প্রতিরোধ ব্যবস্থাও দুর্বল হয়ে পড়ে বলে জানা যায়, ফলে তারা বিভিন্ন সংক্রমণের প্রতি অধিক সংবেদনশীল হয়ে ওঠে।<ref name="Lacetera20185">{{Cite journal|last=Lacetera|first=Nicola|date=2019-01-03|title=Impact of climate change on animal health and welfare|url=|pages=26–31|language=en|doi=10.1093/af/vfy030|issn=2160-6056|pmc=6951873|pmid=32002236|journal=Animal Frontiers|volume=9|issue=1}}</ref> একইভাবে, গবাদি পশুর টিকাকরণও তাপ-জনিত চাপের কারণে কম কার্যকর হতে পারে।একজন্য এখননিপর্যন্তগবেষকরা তাপ-জনিত চাপ পরিমাপ করতেন অসামঞ্জস্যপূর্ণ সংজ্ঞা ব্যবহার করে; বিদ্যমান গবাদি পশু মডেলদের পরীক্ষামূলক তথ্যের সাথে সীমিতসম্পর্ক রয়েছে।<ref>{{cite journal|last2=Amon|first2=Thomas|date=11 July 2022|title=Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology|pages=1811–1827|language=en|doi=10.1007/s00484-022-02321-2|pmc=9418108|pmid=35821443|last1=Foroushani|first1=Sepehr|journal=International Journal of Biometeorology|volume=66|issue=9|bibcode=2022IJBm...66.1811F}}</ref> বিশেষভাবে, যেহেতু গরুর মতো গবাদি পশু তাদের দিনের অনেকটা সময় শুয়ে কাটায়, একটি ব্যাপক তাপ-জনিত চাপ নিরূপণের জন্য মাটিরতাপমাত্রাকেও গণনায় ধরতে হবে।<ref>{{cite journal|last2=Angrecka|first2=Sabina|date=27 October 2018|title=Environmental parameters to assessing of heat stress in dairy cattle—a review|pages=2089–2097|language=en|doi=10.1007/s00484-018-1629-9|pmc=6244856|pmid=30368680|last1=Herbut|first1=Piotr|last3=Walczak|first3=Jacek|journal=International Journal of Biometeorology|volume=62|issue=12|bibcode=2018IJBm...62.2089H}}</ref> কিন্তু, এটা বিবেচনায়ধরেনি এমন প্রথম মডেলটি মাত্র ২০২১সালে প্রকাশিত হয়েছে ; এটাআজও পদ্ধতিগতভাবে শরীরেরতাপমাত্রা ওভারএস্টিমেটকরে এবং শ্বাস-প্রশ্বাসের হার আন্ডারএস্টিমেট করে।<ref>{{cite journal|last2=Narayanan|first2=Vinod|date=23 July 2021|title=A mechanistic thermal balance model of dairy cattle|url=https://www.sciencedirect.com/science/article/pii/S1537511021001331|pages=256–270|language=en|doi=10.1016/j.biosystemseng.2021.06.009|doi-access=free|last1=Li|first1=Jinghui|last3=Kebreab|first3=Ermias|last4=Dikmen|first4=Sedal|last5=Fadel|first5=James G.|journal=Biosystems Engineering|volume=209}}</ref>
[[File:Schauberger_2019_heat_exchanger.png|সংযোগ=https://en.wikipedia.org/wiki/File:Schauberger_2019_heat_exchanger.png|থাম্ব|এই ডায়াগ্রামটি গবাদিপশু পালনের অভ্যন্তরীণ সুবিধার জন্য প্রস্তাবিত একটি হিট এক্সচেঞ্জারের নকশা দেখায়। এটি ইনস্টল করলে তাপের চাপ থেকে গবাদিপশুকে রক্ষা করতে সাহায্য করবে।<ref name="Schauberger2019">{{cite journal|last2=Mikovits|first2=Christian|date=22 January 2019|title=Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs|url=https://link.springer.com/article/10.1007/s10584-019-02525-3|pages=567–587|language=en|doi=10.1007/s10584-019-02525-3|doi-access=free|last1=Schauberger|first1=Günther|last3=Zollitsch|first3=Werner|last4=Hörtenhuber|first4=Stefan J.|last5=Baumgartner|first5=Johannes|last6=Niebuhr|first6=Knut|last7=Piringer|first7=Martin|last8=Knauder|first8=Werner|last9=Anders|first9=Ivonne|last10=Andre|first10=Konrad|last11=Hennig-Pauka|first11=Isabel|last12=Schönhart|first12=Martin|journal=Climatic Change|volume=156|issue=4|bibcode=2019ClCh..156..567S|s2cid=201103432}}</ref>]]
[[File:Schauberger_2019_heat_exchanger.png|সংযোগ=https://en.wikipedia.org/wiki/File:Schauberger_2019_heat_exchanger.png|থাম্ব|এই ডায়াগ্রামটি গবাদিপশু পালনের অভ্যন্তরীণ সুবিধার জন্য প্রস্তাবিত একটি হিট এক্সচেঞ্জারের নকশা দেখায়। এটি ইনস্টল করলে তাপের চাপ থেকে গবাদিপশুকে রক্ষা করতে সাহায্য করবে।<ref name="Schauberger2019">{{cite journal|last2=Mikovits|first2=Christian|date=22 January 2019|title=Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs|url=https://link.springer.com/article/10.1007/s10584-019-02525-3|pages=567–587|language=en|doi=10.1007/s10584-019-02525-3|doi-access=free|last1=Schauberger|first1=Günther|last3=Zollitsch|first3=Werner|last4=Hörtenhuber|first4=Stefan J.|last5=Baumgartner|first5=Johannes|last6=Niebuhr|first6=Knut|last7=Piringer|first7=Martin|last8=Knauder|first8=Werner|last9=Anders|first9=Ivonne|last10=Andre|first10=Konrad|last11=Hennig-Pauka|first11=Isabel|last12=Schönhart|first12=Martin|journal=Climatic Change|volume=156|issue=4|bibcode=2019ClCh..156..567S|s2cid=201103432}}</ref>]]
ঐতিহাসিকভাবে গবাদিপশুর উপর তাপ-জনিত চাপ সংক্রান্ত গবেষণায় গরুর দিকে নজর দেওয়া হতো, কারণতাদের প্রায়শই বাইরে রাখা হয় এবং ফলে জলবায়ু পরিবর্তনের দ্রুত প্রতিক্রিয়া অনুভব করে। অন্যদিকে, ২০০৬-এর দিকেওবিশ্বব্যাপী মোট শূকর উৎপাদনের একটু বেশি ৫০% এবংমোট পোলট্রি উৎপাদনের ৭০% আসতো সম্পূর্ণ ভাবে বাড়ির ভেতর রাখা পশুদের থেকে, এবংশূকরের জন্য ৩-৩.৫গুণ,লেয়ার মুরগীর জন্য ২-২.৪ গুণ এবং ব্রয়লারমুরগীরজন্য ৪.৪-৫ গুণবৃদ্ধি হওয়ার সম্ভাবনা ছিল। ঐতিহাসিকভাবে এই শর্তাবস্থায় থাকা গবাদি পশুদের উষ্ণায়নের জন্য ততটা সংবেদনশীল বলে বিবেচনা করা হতো না যতটা বাইরের অঞ্চলের পশুদের,কারণ এরা উত্তাপরোধী ঘরের মধ্যে বাস করে, যেখানে জলবায়ুনিয়ন্ত্রনের জন্য এবং অতিরিক্ত তাপ সরানোর জন্য ভেন্টিলেশন ব্যবস্থা ব্যবহার করা হয়। তবে, ঐতিহাসিকভাবে শীতল মধ্য-অক্ষাংশের অঞ্চলেগুলিতে, গরম কালেও ঘরের ভেতরের তাপমাত্রা বাইরের তাপমাত্রার চাইতে বেশি থাকতো, এবং তাপমাত্রা বাড়ায় এইসব সিস্টেমের স্পেসিফিকেশন অতিক্রম করায়, ঘরের ভেতরে রাখা পশুরা, বাইরে রাখা পশুর চাইতে তাপের কারণে অধিক সংবেদনশীল হয়ে যায়।
ঐতিহাসিকভাবে গবাদিপশুর উপর তাপ-জনিত চাপ সংক্রান্ত গবেষণায় গরুর দিকে নজর দেওয়া হতো, কারণতাদের প্রায়শই বাইরে রাখা হয় এবং ফলে জলবায়ু পরিবর্তনের দ্রুত প্রতিক্রিয়া অনুভব করে। অন্যদিকে, ২০০৬-এর দিকেওবিশ্বব্যাপী মোট শূকর উৎপাদনের একটু বেশি ৫০% এবংমোট পোলট্রি উৎপাদনের ৭০% আসতো সম্পূর্ণ ভাবে বাড়ির ভেতর রাখা পশুদের থেকে, এবংশূকরের জন্য ৩-৩.৫গুণ,লেয়ার মুরগীর জন্য ২-২.৪ গুণ এবং ব্রয়লারমুরগীরজন্য ৪.৪-৫ গুণবৃদ্ধি হওয়ার সম্ভাবনা ছিল। ঐতিহাসিকভাবে এই শর্তাবস্থায় থাকা গবাদি পশুদের উষ্ণায়নের জন্য ততটা সংবেদনশীল বলে বিবেচনা করা হতো না যতটা বাইরের অঞ্চলের পশুদের,কারণ এরা উত্তাপরোধী ঘরের মধ্যে বাস করে, যেখানে জলবায়ুনিয়ন্ত্রনের জন্য এবং অতিরিক্ত তাপ সরানোর জন্য ভেন্টিলেশন ব্যবস্থা ব্যবহার করা হয়। তবে, ঐতিহাসিকভাবে শীতল মধ্য-অক্ষাংশের অঞ্চলেগুলিতে, গরম কালেও ঘরের ভেতরের তাপমাত্রা বাইরের তাপমাত্রার চাইতে বেশি থাকতো, এবং তাপমাত্রা বাড়ায় এইসব সিস্টেমের স্পেসিফিকেশন অতিক্রম করায়, ঘরের ভেতরে রাখা পশুরা, বাইরে রাখা পশুর চাইতে তাপের কারণে অধিক সংবেদনশীল হয়ে যায়।<ref name="Mikovits2019">{{cite journal|last2=Zollitsch|first2=Werner|date=22 January 2019|title=Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe|url=https://link.springer.com/article/10.1007/s00484-018-01655-0|pages=221–230|language=en|doi=10.1007/s00484-018-01655-0|pmid=30671619|doi-access=free|last1=Mikovits|first1=Christian|last3=Hörtenhuber|first3=Stefan J.|last4=Baumgartner|first4=Johannes|last5=Niebuhr|first5=Knut|last6=Piringer|first6=Martin|last7=Anders|first7=Ivonne|last8=Andre|first8=Konrad|last9=Hennig-Pauka|first9=Isabel|last10=Schönhart|first10=Martin|last11=Schauberger|first11=Günther|journal=International Journal of Biometeorology|volume=63|issue=2|bibcode=2019IJBm...63..221M|s2cid=58951606}}</ref>


জলবায়ু পরিবর্তনের ফলে সৃষ্ট সমস্যা থেকে পশুসম্পদ রক্ষায় বিভিন্ন ধরনের পদক্ষেপ নেয়া যেতে পারে। যেমন, পশুর পানির সরবরাহ বাড়ানো, খোলা আকাশের নিচে রাখা পশুদের জন্য উন্নত আশ্রয়ের ব্যবস্থা করা এবং বদ্ধ স্থানে রাখা পশুর জন্য বায়ু চলাচলের সুবিধা উন্নত করা ইত্যাদি। বিশেষ ধরণের কুলিং সিস্টেম স্থাপন করা সবচেয়ে ব্যয়বহুল পদক্ষেপ, তবে এটি ভবিষ্যতের উষ্ণায়নের প্রভাব পুরোপুরি প্রতিরোধ করতে সক্ষম।
জলবায়ু পরিবর্তনের ফলে সৃষ্ট সমস্যা থেকে পশুসম্পদ রক্ষায় বিভিন্ন ধরনের পদক্ষেপ নেয়া যেতে পারে। যেমন, পশুর পানির সরবরাহ বাড়ানো, খোলা আকাশের নিচে রাখা পশুদের জন্য উন্নত আশ্রয়ের ব্যবস্থা করা এবং বদ্ধ স্থানে রাখা পশুর জন্য বায়ু চলাচলের সুবিধা উন্নত করা ইত্যাদি।<ref name="Ways to help animals during heat stress">{{cite web|date=18 November 2021|title=Caring for animals during extreme heat|url=https://agriculture.vic.gov.au/livestock-and-animals/livestock-health-and-welfare/caring-for-animals-during-extreme-heat|access-date=19 October 2022|website=Agriculture Victoria}}</ref> বিশেষ ধরণের কুলিং সিস্টেম স্থাপন করা সবচেয়ে ব্যয়বহুল পদক্ষেপ, তবে এটি ভবিষ্যতের উষ্ণায়নের প্রভাব পুরোপুরি প্রতিরোধ করতে সক্ষম।<ref name="Schauberger20192">{{cite journal|last2=Mikovits|first2=Christian|date=22 January 2019|title=Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs|url=https://link.springer.com/article/10.1007/s10584-019-02525-3|pages=567–587|language=en|doi=10.1007/s10584-019-02525-3|doi-access=free|last1=Schauberger|first1=Günther|last3=Zollitsch|first3=Werner|last4=Hörtenhuber|first4=Stefan J.|last5=Baumgartner|first5=Johannes|last6=Niebuhr|first6=Knut|last7=Piringer|first7=Martin|last8=Knauder|first8=Werner|last9=Anders|first9=Ivonne|last10=Andre|first10=Konrad|last11=Hennig-Pauka|first11=Isabel|last12=Schönhart|first12=Martin|journal=Climatic Change|volume=156|issue=4|bibcode=2019ClCh..156..567S|s2cid=201103432}}</ref>


শুধুমাত্র যুক্তরাষ্ট্রেই, ২০০৩ সালে তাপজনিত চাপের কারণে প্রাণিসম্পদ খাতে আর্থিক ক্ষতির পরিমাণ ছিল প্রায় ১.৬৯ থেকে ২.৩৬ বিলিয়ন ডলার। সমসাময়িক অভিযোজন ব্যবস্থাগুলির কার্যকারিতা সম্পর্কে বিভিন্ন ধারণার ভিন্নতার কারণে এই ক্ষতির পরিমাণে তারতম্য দেখা যায়। তা সত্ত্বেও, কিছু পর্যালোচনা থেকে জানা যায় যে যুক্তরাষ্ট্র হলো জলবায়ু পরিবর্তনের নেতিবাচক প্রভাবে সৃষ্ট খাদ্য সুরক্ষা বিপর্যয়ের সবচেয়ে কম ঝুঁকিপূর্ণ দেশ। কারণ, যদিও প্রাণিসম্পদের এক্সপোজার এবং এ সম্পর্কিত সামাজিক সংবেদনশীলতার দিক থেকে যুক্তরাষ্ট্রের অবস্থান বিশ্বে মাঝারি পর্যায়ে, তবুও উচ্চ জিডিপি এবং উন্নয়নের স্তরের কারণে তাদের অভিযোজন ক্ষমতা সবচেয়ে বেশি। একই কারণে জাপান এবং ইউরোপের দেশগুলিও কম ঝুঁকিপূর্ণ রাষ্ট্রের অন্তর্ভুক্ত।
শুধুমাত্র যুক্তরাষ্ট্রেই, ২০০৩ সালে তাপজনিত চাপের কারণে প্রাণিসম্পদ খাতে আর্থিক ক্ষতির পরিমাণ ছিল প্রায় ১.৬৯ থেকে ২.৩৬ বিলিয়ন ডলার।<ref>{{cite journal|last2=Cobanov|first2=B.|date=June 2003|title=Economic Losses from Heat Stress by US Livestock Industries|url=https://www.journalofdairyscience.org/article/S0022-0302(03)74040-5/fulltext|pages=E52–E77|language=en|doi=10.3168/jds.S0022-0302(03)74040-5|doi-access=free|last1=St-Pierre|first1=N.R.|last3=Schnitkey|first3=G.|journal=Journal of Dairy Science|volume=86}}</ref> সমসাময়িক অভিযোজন ব্যবস্থাগুলির কার্যকারিতা সম্পর্কে বিভিন্ন ধারণার ভিন্নতার কারণে এই ক্ষতির পরিমাণে তারতম্য দেখা যায়। তা সত্ত্বেও, কিছু পর্যালোচনা থেকে জানা যায় যে যুক্তরাষ্ট্র হলো জলবায়ু পরিবর্তনের নেতিবাচক প্রভাবে সৃষ্ট খাদ্য সুরক্ষা বিপর্যয়ের সবচেয়ে কম ঝুঁকিপূর্ণ দেশ। কারণ, যদিও প্রাণিসম্পদের এক্সপোজার এবং এ সম্পর্কিত সামাজিক সংবেদনশীলতার দিক থেকে যুক্তরাষ্ট্রের অবস্থান বিশ্বে মাঝারি পর্যায়ে, তবুও উচ্চ জিডিপি এবং উন্নয়নের স্তরের কারণে তাদের অভিযোজন ক্ষমতা সবচেয়ে বেশি। একই কারণে জাপান এবং ইউরোপের দেশগুলিও কম ঝুঁকিপূর্ণ রাষ্ট্রের অন্তর্ভুক্ত।


অন্যদিকে, মঙ্গোলিয়ান পশুসম্পদ যেভাবে জলবায়ু পরিবর্তনের সম্মুখীন হয় তা আমেরিকান প্রাণিসম্পদের থেকে খুব আলাদা নয়; তবে মঙ্গোলিয়ান সমাজে পশুপালনের অত্যন্ত গুরুত্ব এবং তাদের সীমিত অভিযোজন ক্ষমতা বিবেচনায় মঙ্গোলিয়াকে বিশ্বের অন্যতম ঝুঁকিপূর্ণ দেশ হিসেবে চিহ্নিত করা হয়। সাব-সাহারান আফ্রিকার দেশগুলো সাধারণত প্রাণিসম্পদ এক্সপোজার, কম অভিযোজন ক্ষমতা এবং তাদের সমাজে পশুপালনের গুরুত্বের কারণে উচ্চ সংবেদনশীলতায় ভোগে। এই সমস্যাটি বিশেষভাবে পূর্ব আফ্রিকার দেশগুলির জন্য বেশ তীব্র, যেখানে ২০৭০ সালের পরে বিভিন্ন জলবায়ু পরিবর্তনের ধারণার উপর ভিত্তি করে ৪ থেকে ১৯% পশুপালন এলাকার "বিপজ্জনক" তাপীয় চাপের ঘটনা "উল্লেখযোগ্যভাবে" বেড়ে যাবে বলে আশঙ্কা করা হচ্ছে। তীব্রতম ধারণা SSP5-8.5 অনুসারে, ২০৫০ সালের মধ্যেই পশুসম্পদ ধারণক্ষম জমির পরিমাণ হ্রাস পাবে এ বিষয়ে উচ্চমাত্রার আস্থা রয়েছে, কারণ কিছু কিছু স্থানে পশুপালনের জন্য তাপের চাপ ইতিমধ্যেই অসহনীয় হয়ে উঠবে।
অন্যদিকে, মঙ্গোলিয়ান পশুসম্পদ যেভাবে জলবায়ু পরিবর্তনের সম্মুখীন হয় তা আমেরিকান প্রাণিসম্পদের থেকে খুব আলাদা নয়; তবে মঙ্গোলিয়ান সমাজে পশুপালনের অত্যন্ত গুরুত্ব এবং তাদের সীমিত অভিযোজন ক্ষমতা বিবেচনায় মঙ্গোলিয়াকে বিশ্বের অন্যতম ঝুঁকিপূর্ণ দেশ হিসেবে চিহ্নিত করা হয়। সাব-সাহারান আফ্রিকার দেশগুলো সাধারণত প্রাণিসম্পদ এক্সপোজার, কম অভিযোজন ক্ষমতা এবং তাদের সমাজে পশুপালনের গুরুত্বের কারণে উচ্চ সংবেদনশীলতায় ভোগে। এই সমস্যাটি বিশেষভাবে পূর্ব আফ্রিকার দেশগুলির জন্য বেশ তীব্র,<ref name="Godber2014">{{cite journal|last2=Wall|first2=Richard|date=1 April 2014|title=Livestock and food security: vulnerability to population growth and climate change|pages=3092–3102|language=en|doi=10.1111/gcb.12589|pmc=4282280|pmid=24692268|last1=Godber|first1=Olivia F.|journal=Global Change Biology|volume=20|issue=10|bibcode=2014GCBio..20.3092G}}</ref> যেখানে ২০৭০ সালের পরে বিভিন্ন জলবায়ু পরিবর্তনের ধারণার উপর ভিত্তি করে ৪ থেকে ১৯% পশুপালন এলাকার "বিপজ্জনক" তাপীয় চাপের ঘটনা "উল্লেখযোগ্যভাবে" বেড়ে যাবে বলে আশঙ্কা করা হচ্ছে।<ref>{{cite journal|last2=Mutua|first2=John Yumbya|date=18 February 2021|title=Heat stress will detrimentally impact future livestock production in East Africa|url=https://www.nature.com/articles/s43016-021-00226-8|pages=88–96|language=en|doi=10.1038/s43016-021-00226-8|pmid=37117410|last1=Rahimi|first1=Jaber|last3=Notenbaert|first3=An M. O.|last4=Marshall|first4=Karen|last5=Butterbach-Bahl|first5=Klaus|journal=Nature Food|volume=2|issue=2|s2cid=234031623}}</ref> তীব্রতম ধারণা SSP5-8.5 অনুসারে, ২০৫০ সালের মধ্যেই পশুসম্পদ ধারণক্ষম জমির পরিমাণ হ্রাস পাবে এ বিষয়ে উচ্চমাত্রার আস্থা রয়েছে, কারণ কিছু কিছু স্থানে পশুপালনের জন্য তাপের চাপ ইতিমধ্যেই অসহনীয় হয়ে উঠবে।<ref name="AR6_WGII_Chapter53">Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter05.pdf Chapter 5: Food, Fibre and Other Ecosystem Products]. In [https://www.ipcc.ch/report/ar6/wg2/ Climate Change 2022: Impacts, Adaptation and Vulnerability] [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012</ref>{{rp|748}}


== তথ্যসূত্র ==
== তথ্যসূত্র ==

১৭:১০, ২৭ ফেব্রুয়ারি ২০২৪ তারিখে সংশোধিত সংস্করণ

Examples of the effects of climate change on agriculture: 2019 flooding of Toki River caused by Typhoon Hagibis, which was exacerbated by climate change;[১] increase in global leaf area primarily caused by the CO2 fertilization effect;[২] 2020–2023 Horn of Africa drought, the worst on record and effectively impossible without effects of climate change on the water cycle;[৩] maize plant in Brazil attacked by fall armyworm, a pest that is expected to benefit from the changing climate.[৪]

জলবায়ু পরিবর্তনের ফলে কৃষির উপর ব্যাপক প্রভাব পড়ছে, যার অনেকগুলি বিশ্বব্যাপী খাদ্য নিরাপত্তা নিশ্চিত করতে কৃষি কার্যক্রমের জন্য কঠিন পরিস্থিতি তৈরি করছে। ক্রমবর্ধমান তাপমাত্রা এবং আবহাওয়ার ধরনে পরিবর্তন প্রায়শই খরা, তাপপ্রবাহ এবং বন্যার কারণে জলের সংকটের ফলে ফসলের উৎপাদন কমিয়ে দেয়।[৫] জলবায়ু পরিবর্তনের এই প্রভাবগুলো বর্তমানে বিরল হলেও, একইসাথে বিভিন্ন অঞ্চলে ফসল নষ্ট হওয়ার ঝুঁকি বাড়িয়ে দিতে পারে, যা বৈশ্বিক খাদ্য সরবরাহের জন্য উল্লেখযোগ্য পরিণতি বয়ে আনবে।[৬][৭] অনেক কীটপতঙ্গ এবং উদ্ভিদ রোগ হয় আরও ব্যাপক হয়ে উঠবে বলে আশঙ্কা করা হচ্ছে অথবা নতুন অঞ্চলে ছড়িয়ে পড়বে। বিশ্বের গবাদি পশুদেরও একই সমস্যাগুলির দ্বারা প্রভাবিত হওয়ার আশঙ্কা রয়েছে, যেমন অত্যধিক তাপের চাপ থেকে শুরু করে পশুখাদ্যের ঘাটতি এবং পরজীবী ও ভেক্টর-বাহিত রোগের বিস্তার।[৮]:৭৪৬

মানুষের কার্যকলাপের কারণে বায়ুমণ্ডলে CO2 এর মাত্রা বৃদ্ধি একটি CO2 নিষেককরণ প্রভাব সৃষ্টি করে, যা জলবায়ু পরিবর্তনের কারণে কৃষির উপর কিছু ক্ষতিকর প্রভাবকে কমিয়ে দেয়। যাইহোক, মাকড়সার মতো C4 ফসলের উপর এর সামান্য প্রভাব রয়েছে[৯] এবং এটি অপরিহার্য মাইক্রোনিউট্রিয়েন্টসের নিম্ন স্তরের বিনিময়ে আসে।[১০]:৭১৭ উপকূলে, কিছু কৃষি জমি সমুদ্রপৃষ্ঠের উচ্চতার কারণে হারিয়ে যাবে বলে আশা করা হচ্ছে, অন্যদিকে হিমবাহ গলে যাওয়ার ফলে সেচের জন্য কম পানি পাওয়া যেতে পারে।[১১] তবে, হিমায়িত জমি গলে যাওয়ার সাথে সাথে আরও আবাদযোগ্য জমি উপলব্ধ হতে পারে। অন্যান্য প্রভাবগুলির মধ্যে রয়েছে ক্ষয় এবং মাটির উর্বরতার পরিবর্তন এবং ফসলের মরসুমের দৈর্ঘ্য। জলবায়ু উষ্ণায়নের সাথে সাথে সালমোনেলা বা মাইকোটক্সিন তৈরি করা ছত্রাকের মতো ব্যাকটেরিয়া থেকে খাদ্য নিরাপত্তায় নেতিবাচক প্রভাবও বৃদ্ধি পায়, যা খরচ এবং খাদ্যের ক্ষতি বাড়ায়।[১২]

জলবায়ু পরিবর্তনের ফলে ফসলের উৎপাদনে ব্যাপক প্রভাব পড়ছে, এর বিষয়ে ব্যাপক গবেষণা হয়েছে। বিশেষ করে চারটি প্রধান ফসল—ভুট্টা, ধান, গম এবং সয়াবিন—এর উপর এর প্রভাব নিয়ে গবেষণা হচ্ছে। সরাসরি এবং পরোক্ষভাবে (পশুখাদ্য হিসাবে) মানুষ যে ক্যালোরি গ্রহণ করে তার প্রায় দুই-তৃতীয়াংশ এই ফসল থেকে আসে।[১৩] তবুও, কিছু গুরুত্বপূর্ণ অনিশ্চয়তা রয়েছে – যেমন, ভবিষ্যতের জনসংখ্যা বৃদ্ধি, যা শুধুমাত্র foreseeable future–এর জন্য বৈশ্বিক খাদ্য চাহিদা বাড়িয়ে তুলবে।[১৪] এছাড়াও সম্পর্কিত কিন্তু আলাদা চ্যালেঞ্জ যেমন মাটির ক্ষয় এবং ভূগর্ভস্থ পানির অবক্ষয় নিয়ে আলোচনার প্রয়োজন রয়েছে। অপরদিকে, ১৯৬০ এর দশক থেকে কৃষি উৎপাদন বৃদ্ধি করেছে, যা সব একত্রে গ্রিন রেভ্যুলেশন (সবুজ বিপ্লব) নামে পরিচিত, এবং এই উন্নতির কিছু অংশ অব্যাহত থাকবে বলে আশা করা হচ্ছে।[১৫]:৭২৭

সামগ্রিকভাবে, একটি ঐকমত্য রয়েছে যে অদূর ভবিষ্যতে বিশ্ব খাদ্য নিরাপত্তায় তুলনামূলকভাবে সামান্য পরিবর্তন হবে: ২০২১ সালে ৭২০ মিলিয়ন থেকে ৮১১ মিলিয়ন মানুষকে অপুষ্টিতে আক্রান্ত বলে বিবেচনা করা হয়েছিল, যেখানে প্রায় ২০০,০০০ মানুষ খাদ্য নিরাপত্তার একটি "বিপর্যয়কর" স্তরে রয়েছে।[১৬] এর তুলনায়, জলবায়ু পরিবর্তন ২০৫০ সালের মধ্যে অতিরিক্ত ৮ থেকে ৮০ মিলিয়ন মানুষকে ক্ষুধার ঝুঁকিতে ফেলবে বলে আশঙ্কা করা হচ্ছে (ভবিষ্যতের উষ্ণায়নের তীব্রতা এবং অভিযোজন ব্যবস্থার কার্যকারিতার উপর নির্ভর করে)।[১৭]:৭১৭ ততদিনে ক্রমাগত অর্থনৈতিক ও কৃষি উন্নয়ন শত শত মিলিয়ন মানুষের খাদ্য নিরাপত্তা উন্নত করতে পারে।[১৮][১৯] যেসব গবেষণা ও পূর্বাভাস ভবিষ্যতে আরও বেশি দূরবর্তী (২১০০ এবং তার পরে) তা বরং সীমিত, এবং কিছু বিজ্ঞানী ভবিষ্যতের জলবায়ু দ্বারা সৃষ্ট বর্তমানে অনভিজ্ঞ চরম আবহাওয়া ঘটনার ফলে খাদ্য নিরাপত্তায় যে প্রভাব পড়বে সে সম্পর্কে উদ্বেগ প্রকাশ করেছেন।[২০][২১][২২] তবুও, প্রকাশিত বৈজ্ঞানিক সাহিত্যে একবিংশ শতাব্দীর মধ্যে ব্যাপক বিশ্বব্যাপী দুর্ভিক্ষের কোনও প্রত্যাশা নেই।[২৩][২৪]

জলবায়ু পরিবর্তনের অভিযোজনের বিভিন্ন পদক্ষেপ কৃষির উপর জলবায়ু পরিবর্তনের নেতিবাচক প্রভাবের ঝুঁকি কমাতে পারে। এই পদক্ষেপগুলির মধ্যে রয়েছে পরিচালন পদ্ধতিতে পরিবর্তন, কৃষি উদ্ভাবন, প্রাতিষ্ঠানিক পরিবর্তন, এবং জলবায়ু-বুদ্ধিসম্পন্ন কৃষি।[২৫] একটি টেকসই খাদ্য ব্যবস্থা তৈরি করতে, এইগুলি বিশ্ব উষ্ণায়ন কমানোর জন্য প্রয়োজনীয় পরিবর্তনের মতোই গুরুত্বপূর্ণ বলে বিবেচিত হয়।[২৬][২৭]

আবহাওয়ার ধরণে সরাসরি পরিবর্তনের প্রভাব

প্রত্যক্ষ করা বিরূপ আবহাওয়া পরিস্থিতিতে পরিবর্তন

১৯৬৪ থেকে ২০১৫ পর্যন্ত ইউরোপে চরম আবহাওয়ার ঘটনাগুলোর পরিলক্ষিত বৃদ্ধি।[২৮]
ঐতিহাসিকভাবে অভ্যস্ত তাপমাত্রার চেয়ে বেশি তাপমাত্রার সংস্পর্শে আসার ফলে, সয়াবিন গাছের বৃদ্ধি কম হয় এবং পাতার আকার ছোট হয়ে যায়।[২৯]

কৃষি আবহাওয়া-সংবেদনশীল, এবং তাপপ্রবাহ, খরা, বা ভারী বৃষ্টিপাতের মতো বড় ধরনের ঘটনা (যা নিম্ন ও উচ্চ বৃষ্টিপাতের চরম ঘটনা হিসাবেও পরিচিত) উল্লেখযোগ্য ক্ষতির কারণ হতে পারে। উদাহরণস্বরূপ, অস্ট্রেলিয়ার কৃষকদের এল নিনো আবহাওয়া পরিস্থিতিতে ক্ষতির সম্মুখীন হওয়ার সম্ভাবনা খুব বেশি, এবং ২০০৩ সালে ইউরোপীয় তাপপ্রবাহে ১৩ বিলিয়ন ইউরো অবীমা কৃষিক্ষেত্রের ক্ষতি হয়েছিল।[৩০] জলবায়ু পরিবর্তন তাপপ্রবাহের ফ্রিকোয়েন্সি এবং তীব্রতা বৃদ্ধি করে বলে জানা যায়, এবং এটি বৃষ্টিপাতকে কম অনুমানযোগ্য এবং চরম সীমার দিকে ঠেলে দিতে পারে। একটি নির্দিষ্ট আবহাওয়া ঘটনা এবং এর ফলে সৃষ্ট ক্ষয়ক্ষতিকে স্বাভাবিক পরিবর্তনের চেয়ে জলবায়ু পরিবর্তনের দিকে আরোপ করার বিষয়টি এখনও অপেক্ষাকৃত নতুন গবেষণার ক্ষেত্র, তাই এটি প্রায়ই কঠিন। কিছু ব্যতিক্রমের মধ্যে পশ্চিম আফ্রিকা অন্তর্ভুক্ত, যেখানে জলবায়ু-প্ররোচিত চরম আবহাওয়ার তীব্রতা বাজরার ফলন ১০-২০% এবং সরগমের ফলন ৫-১৫% কমিয়ে দিয়েছে বলে দেখা গেছে। একইভাবে, দেখা গেছে যে, ২০০৭ সালে দক্ষিণ আফ্রিকায় জলবায়ু পরিবর্তনের কারণে খরার পরিস্থিতি আরও তীব্র হয়েছিল, যা খাদ্যের দাম বাড়িয়েছিল এবং লেসোথো দেশে "চরম খাদ্য-অনিরাপত্তা" সৃষ্টি করেছিল। ২০১৪-২০১৬ সালে এল নিনো ঘটনার প্রভাবকে জলবায়ু পরিবর্তন তীব্র করায় খরার প্রভাবে দক্ষিণ আফ্রিকার কৃষিও ক্ষতিগ্রস্ত হয়েছিল।[৩১]:৭২৪

ইউরোপে, ১৯৫০ থেকে ২০১৯ সালের মধ্যে, তাপের চরম ঘটনাগুলি আরও ঘন ঘন হয়েছে এবং ক্রমান্বয়ে ঘটার সম্ভাবনাও বেড়েছে, একই সময়ে শীতের চরম ঘটনাগুলি হ্রাস পেয়েছে। উত্তর ইউরোপ এবং পূর্ব ইউরোপের অনেক স্থানে প্রায়শই চরম বৃষ্টিপাত হয়, ভূমধ্যসাগরীয় অঞ্চলে খরা বেশি হয়।[৩২] ইউরোপীয় ফসল উৎপাদনের উপর তাপপ্রবাহ এবং খরার প্রভাবের তীব্রতা ৫০ বছরের মধ্যে তিনগুণ বেড়েছে বলে দেখা গেছে - ১৯৬৪-১৯৯০ সালের মধ্যে ২.২% ক্ষতি থেকে ১৯৯১-২০১৫ সালে ৭.৩% ক্ষতি হয়েছে।[৩৩][৩৪] ২০১৮ সালের গ্রীষ্মে, জলবায়ু পরিবর্তনের সাথে সম্পর্কিত তাপপ্রবাহ সম্ভবত বিশ্বের অনেক অংশে, বিশেষ করে ইউরোপে গড় ফলন অনেকটা কমিয়ে দিয়েছিল। আগস্ট মাসে, ফসলের ব্যর্থতার কারণে বিশ্বব্যাপী খাদ্যের দাম বেড়ে যায়।[৩৫]

অন্যদিকে, জলবায়ু পরিবর্তনের সাথে যুক্ত বন্যাও সাম্প্রতিক বছরগুলিতে কৃষির উপর উল্লেখযোগ্য প্রতিকূল প্রভাব ফেলেছে। ২০১৯ সালের মে মাসে, বন্যার কারণে মার্কিন যুক্তরাষ্ট্রের মধ্য-পশ্চিম অঞ্চলে ভুট্টা রোপণের মৌসুম সংক্ষিপ্ত হয়ে যায়, যা প্রত্যাশিত ফলন ১৫ বিলিয়ন বুশেল থেকে কমিয়ে ১৪.২ এ নামিয়ে আনে।[৩৬] ২০২১ সালের ইউরোপীয় বন্যার সময়, অনুমানগুলি বেলজিয়ামের কৃষি খাতে মারাত্মক ক্ষতির দিকে নির্দেশ করেছিল, যে দেশটি বন্যার সবচেয়ে বেশি ক্ষতিগ্রস্ত হয়েছিল, এছাড়াও মাটির ক্ষয়ের মতো দীর্ঘমেয়াদী প্রভাব রয়েছে।[৩৭] চীনে, ২০২৩ সালের গবেষণায় দেখা গেছে যে বিগত দুই দশকে চরম বৃষ্টিপাতের কারণে দেশটির চাল উৎপাদনের প্রায় ৮% ক্ষতি হয়েছে। এই সময়ের মধ্যে অতিরিক্ত তাপের কারণে ক্ষতির সাথে এটিকে তুলনীয় বলে মনে করা হয়েছিল।[৩৮]

তাপমাত্রা বৃদ্ধির ফলে প্রত্যাশিত প্রভাব

২০১১ সালে মার্কিন যুক্তরাষ্ট্রের ন্যাশনাল রিসার্চ কাউন্সিল কর্তৃক অনুমানকৃত বিভিন্ন অক্ষাংশে ফসলের ফলনে জলবায়ু-চালিত পরিবর্তন।[৩৯]:Figure ৫.১
৩৫°C (৯৫°F) এর বেশি তাপমাত্রায় ভুট্টা এবং ৩৮.৮°C (১০১.৮°F) এর বেশি তাপমাত্রায় সয়াবিন প্রজনন করতে ব্যর্থ হবে।[৪০]

তাপমাত্রা এবং আবহাওয়ার ধরণে পরিবর্তন কৃষিকাজের উপযোগী এলাকাগুলোকে বদলে দেবে। বর্তমান পূর্বাভাস হল যে শুষ্ক এবং আধা-শুষ্ক অঞ্চলগুলোতে (মধ্যপ্রাচ্য, আফ্রিকা, অস্ট্রেলিয়া, দক্ষিণ-পশ্চিম যুক্তরাষ্ট্র, এবং দক্ষিণ ইউরোপ) তাপমাত্রা বাড়বে এবং বৃষ্টিপাত কমবে।[৪১][৪২] উপরন্তু, শতাব্দীর প্রথমার্ধে প্রত্যাশিত মাঝারি তাপমাত্রা বৃদ্ধির (১-২ ডিগ্রি সেলসিয়াস) কারণে ক্রান্তীয় অঞ্চলে ফসলের ফলন নেতিবাচকভাবে প্রভাবিত হবে।[৪৩] শতাব্দীর দ্বিতীয়ার্ধে, আরও উষ্ণায়নের ফলে কানাডা ও উত্তর মার্কিন যুক্তরাষ্ট্র সহ সব অঞ্চলে ফসলের ফলন হ্রাস পাবে।[৪৪] অনেক প্রধান ফসল তাপমাত্রার প্রতি অত্যন্ত সংবেদনশীল; যখন তাপমাত্রা ৩৬ ডিগ্রি সেন্টিগ্রেড (৯৭ ডিগ্রি ফারেনহাইট) এর উপরে ওঠে তখন সয়াবিনের চারা মারা যায় এবং ভুট্টার পরাগরেণুর জীবনীশক্তি হ্রাস পায়।[৪৫][৪৬]

বর্তমানে কিছু অঞ্চলে শীতকালে উচ্চ তাপমাত্রা এবং বরফমুক্ত দিন বৃদ্ধি ক্ষতিকারক হিসাবে কাজ করছে। এর কারণে উদ্ভিদের ফুল ফোটার সময় এবং পরাগযোগকারীদের কার্যকলাপের মধ্যে একটি ফেনোলজিক্যাল মিসম্যাচ (phenological mismatch) সৃষ্টি হতে পারে, যা উদ্ভিদের প্রজনন ক্ষমতার জন্য হুমকি হয়ে দাঁড়ায়।[৪৭] তবে, দীর্ঘমেয়াদে এর ফলে ফসলের মরসুম দীর্ঘস্থায়ী হতে পারে।[৪৮][৪৯] উদাহরণস্বরূপ, ২০১৪ সালের একটি গবেষণায় দেখা গেছে যে, তাপমাত্রা বৃদ্ধির ফলে চীনের হেইলংজিয়াং অঞ্চলে ভুট্টার ফলন প্রতি দশকে ৭ থেকে ১৭% বৃদ্ধি পেয়েছে।[৫০] অন্যদিকে, ২০১৭ সালের একটি মেটা-বিশ্লষণে উষ্ণায়নের প্রভাব অনুমান করার চারটি ভিন্ন পদ্ধতি থেকে প্রাপ্ত তথ্য তুলনাা করা হয়। এই চার পদ্ধতির মধ্যে দুটি জলবায়ু মডেল, পরিসংখ্যানগত রিগ্রেশন এবং ফিল্ড এক্সপেরিমেন্ট (কতগুলি ফসলের চারপাশের জমিকে কৃত্রিমভাবে কন্ট্রোলের তুলনায় বেশি উষ্ণ করতো তারা) অন্তর্ভুক্ত ছিল। এই মেটা-বিশ্লষণ নিশ্চিত করে যে বিশ্বব্যাপী পরিসরে, উষ্ণায়নের একক প্রভাব চারটি গুরুত্বপূর্ণ ফসলের উপর সামঞ্জস্যপূর্ণভাবে নেতিবাচক, এটা নির্দেশ করে যে বৃদ্ধির যেকোনো কারণ হবে বৃষ্টিপাতের পরিবর্তন এবং CO2 সার প্রভাব।[৫১]

গবাদি পশুর ওপর তাপের প্রভাব

বিশ্বব্যাপী জলবায়ু পরিবর্তনের তীব্রতা বৃদ্ধির ফলে জ্যামাইকার খামারের পশুদের তাপীয় সূচক (thermal heat index) আরও বেড়ে যায়। উচ্চ তাপীয় সূচক তাপজনিত চাপের বহুল ব্যবহৃত সূচকগুলোর মধ্যে একটি।[৫২]

সাধারণভাবে, গৃহপালিত পশুদের জন্য আদর্শ তাপমাত্রার সীমা ১০ থেকে ৩০ ডিগ্রি সেলসিয়াসের (৫০ থেকে ৮৬ ডিগ্রি ফারেনহাইট) মধ্যে।[৫৩]:৭৪৭ জলবায়ু পরিবর্তন যেমন বিশ্বের শীতল অঞ্চলে বসবাসরত মানুষের জন্য সামগ্রিক আরাম বৃদ্ধি করবে বলে আশা করা হচ্ছে, তেমনি ঐসব এলাকার গবাদি পশুদের শীতকাল আরও সহনীয় হবে।[৫৪] তবে, বিশ্বজুড়ে গ্রীষ্মকালীন তাপমাত্রা বৃদ্ধি এবং অধিকতর ঘন ঘন ও তীব্র তাপপ্রবাহ স্পষ্টভাবে নেতিবাচক প্রভাব ফেলবে, ফলে গবাদি পশুদের তাপজনিত চাপের ঝুঁকি উল্লেখযোগ্যভাবে বেড়ে যাবে। জলবায়ু পরিবর্তনের সবচেয়ে তীব্র নিঃসরণ ও সর্বোচ্চ উষ্ণায়নের (SSP5-8.5) অবস্থায়, “নিম্ন অক্ষাংশের গরু, ভেড়া, ছাগল, শূকর এবং পোল্ট্রি বছরে ৭২-১৩৬ দিন চরম উচ্চ তাপমাত্রা এবং আদ্রতা থেকে উদ্ভূত চাপের সম্মুখীন হবে।”[৫৫]:৭১৭

ক্যারিবিয়ান অঞ্চলের প্রতিনিধি হিসেবে বিবেচিত জ্যামাইকায়, লেয়ার মুরগী বাদে বর্তমান জলবায়ুতে সব গবাদি পশুই “খুব মারাত্মক” তাপ-জনিত চাপের সম্মুখীন হয়। গরমের পাঁচ মাস এবং শরতের প্রথমদিকে শূকরগুলো প্রতিদিন কমপক্ষে একবার এই তাপ-জনিত চাপের সম্মুখীন হয়। রোমন্থনকারী পশু (ruminants - যেমন, গরু, ছাগল ইত্যাদি) এবং ব্রয়লার মুরগী কেবল শীতকালে প্রতিদিনের "খুব মারাত্মক" তাপ-জনিত চাপ এড়াতে পারে। এটা ভবিষ্যৎবাণী করা হয়েছে যে ১.৫ ডিগ্রি সেলসিয়াস (২.৭ ডিগ্রি ফারেনহাইট) বৈশ্বিক উষ্ণায়নে রোমন্থনকারীপশু এবং ব্রয়লার মুরগীদের জন্য “খুব মারাত্মক” তাপ-জনিত চাপ একটি নিত্যদিনের ঘটনা হয়ে উঠবে। ২ ডিগ্রি সেলসিয়াস (৩.৬ ডিগ্রিফারেনহাইট) উষ্ণায়নে, এটি অধিক সময় জুড়ে অনুভূত হবে, এবং ক্যারিবিয়ান অঞ্চলে গবাদিপশু উৎপাদনের জন্য নিবিড় শীতলীকরণব্যবস্থা সম্ভবত অপরিহার্য হয়ে পড়বে। ২.৫ ডিগ্রি সেলসিয়াস (৪.৫ ডিগ্রি ফারেনহাইট) উষ্ণায়নে, কেবল লেয়ারমুরগী শীতকালীন মাসগুলোতে প্রতিদিনের “খুব মারাত্মক” তাপ-জনিত চাপ এড়াতে পারবে।[৫৬]

প্রাণিসম্পদের উপর তাপ ও চাপের প্রভাব।[৫৭]

যখন গবাদি পশুর শরীরের তাপমাত্রা স্বাভাবিক তাপমাত্রার ৩-৪ ডিগ্রি সেন্টিগ্রেড (৫.৪-৭.২ ডিগ্রি ফারেনহাইট) উপরে উঠে যায়, তা খুব শীঘ্রই “হিট স্ট্রোক, হিট এক্সজশন, হিট সিনকোপ, হিট ক্র্যাম্পস, এবং অবশেষে অঙ্গ বৈকল্যে” পরিণত হয়। বছরের সবচাইতে উষ্ণ মাসগুলিতে এবং তাপপ্রবাহ চলাকালে গবাদি পশুর মৃত্যুহার অধিক বলে জানা যায়।২০০৩ সালের ইউরোপীয় তাপপ্রবাহের সময়, উদাহরণস্বরূপ, হাজারের অধিক শূকর,পোল্ট্রি এবং খরগোশ কেবল ফ্রান্সের ব্রিটেনি এবং পেইস-দে-লা-ল্যয়ের অঞ্চলে মারা গিয়েছিল।[৫৮]

গবাদি পশু তাপজনিত চাপ থেকে একাধিক উপ-মারাত্মক প্রভাব ভোগ করতে পারে, যেমন দুধ উৎপাদন কমে যাওয়া। তাপমাত্রা ৩০°C (৮৬°F) ছাড়িয়ে গেলে, গরু, ভেড়া, ছাগল, শূকর এবং মুরগী তাপমাত্রা প্রতি ডিগ্রি বাড়ার সাথেসাথে ৩-৫% কম খাদ্য গ্রহণ করতে শুরু করে।[৫৯] একই সময়ে, তারা শ্বাস-প্রশ্বাস এবংঘামার হার বাড়িয়ে দেয়, এবং এই সম্মিলিত প্রতিক্রিয়াগুলি বিপাকীয় ব্যাধির দিকে ধাবিত করে। একটি উদাহরণ হল কিটোসিস (ketosis); এই অবস্থায় পশুর দেহ দ্রুততর নিজের চর্বিজাতীয় সঞ্চয় বিশ্লেষন করতে থাকে।[৬০] তাপজনিত চাপ অ্যান্টি-অক্সিড্যান্ট এনজাইমের ক্রিয়াশীলতা বাড়িয়ে দেয়, যার ফলে অক্সিড্যান্ট এবং অ্যান্টি-অক্সিড্যান্টঅণুরমধ্যে ভারসাম্যহীনতা সৃষ্টি হতে পারে, যাকে অক্সিডেটিভ চাপ বলে। ক্রোমিয়ামের মতো অ্যান্টি-অক্সিড্যান্টযুক্ত খাদ্য গ্রহণ অক্সিডেটিভ চাপ মোকাবেলায় সাহায্য করতেপারে এবং অন্যান্য সংক্রামক অবস্থার দিকে যাওয়া থেকে আটকাতে পারে, তবুও কেবলসীমিত ভাবে।[৬১]

তাপ-জনিত চাপে থাকা পশুদের রোগ প্রতিরোধ ব্যবস্থাও দুর্বল হয়ে পড়ে বলে জানা যায়, ফলে তারা বিভিন্ন সংক্রমণের প্রতি অধিক সংবেদনশীল হয়ে ওঠে।[৬২] একইভাবে, গবাদি পশুর টিকাকরণও তাপ-জনিত চাপের কারণে কম কার্যকর হতে পারে।একজন্য এখননিপর্যন্তগবেষকরা তাপ-জনিত চাপ পরিমাপ করতেন অসামঞ্জস্যপূর্ণ সংজ্ঞা ব্যবহার করে; বিদ্যমান গবাদি পশু মডেলদের পরীক্ষামূলক তথ্যের সাথে সীমিতসম্পর্ক রয়েছে।[৬৩] বিশেষভাবে, যেহেতু গরুর মতো গবাদি পশু তাদের দিনের অনেকটা সময় শুয়ে কাটায়, একটি ব্যাপক তাপ-জনিত চাপ নিরূপণের জন্য মাটিরতাপমাত্রাকেও গণনায় ধরতে হবে।[৬৪] কিন্তু, এটা বিবেচনায়ধরেনি এমন প্রথম মডেলটি মাত্র ২০২১সালে প্রকাশিত হয়েছে ; এটাআজও পদ্ধতিগতভাবে শরীরেরতাপমাত্রা ওভারএস্টিমেটকরে এবং শ্বাস-প্রশ্বাসের হার আন্ডারএস্টিমেট করে।[৬৫]

এই ডায়াগ্রামটি গবাদিপশু পালনের অভ্যন্তরীণ সুবিধার জন্য প্রস্তাবিত একটি হিট এক্সচেঞ্জারের নকশা দেখায়। এটি ইনস্টল করলে তাপের চাপ থেকে গবাদিপশুকে রক্ষা করতে সাহায্য করবে।[৬৬]

ঐতিহাসিকভাবে গবাদিপশুর উপর তাপ-জনিত চাপ সংক্রান্ত গবেষণায় গরুর দিকে নজর দেওয়া হতো, কারণতাদের প্রায়শই বাইরে রাখা হয় এবং ফলে জলবায়ু পরিবর্তনের দ্রুত প্রতিক্রিয়া অনুভব করে। অন্যদিকে, ২০০৬-এর দিকেওবিশ্বব্যাপী মোট শূকর উৎপাদনের একটু বেশি ৫০% এবংমোট পোলট্রি উৎপাদনের ৭০% আসতো সম্পূর্ণ ভাবে বাড়ির ভেতর রাখা পশুদের থেকে, এবংশূকরের জন্য ৩-৩.৫গুণ,লেয়ার মুরগীর জন্য ২-২.৪ গুণ এবং ব্রয়লারমুরগীরজন্য ৪.৪-৫ গুণবৃদ্ধি হওয়ার সম্ভাবনা ছিল। ঐতিহাসিকভাবে এই শর্তাবস্থায় থাকা গবাদি পশুদের উষ্ণায়নের জন্য ততটা সংবেদনশীল বলে বিবেচনা করা হতো না যতটা বাইরের অঞ্চলের পশুদের,কারণ এরা উত্তাপরোধী ঘরের মধ্যে বাস করে, যেখানে জলবায়ুনিয়ন্ত্রনের জন্য এবং অতিরিক্ত তাপ সরানোর জন্য ভেন্টিলেশন ব্যবস্থা ব্যবহার করা হয়। তবে, ঐতিহাসিকভাবে শীতল মধ্য-অক্ষাংশের অঞ্চলেগুলিতে, গরম কালেও ঘরের ভেতরের তাপমাত্রা বাইরের তাপমাত্রার চাইতে বেশি থাকতো, এবং তাপমাত্রা বাড়ায় এইসব সিস্টেমের স্পেসিফিকেশন অতিক্রম করায়, ঘরের ভেতরে রাখা পশুরা, বাইরে রাখা পশুর চাইতে তাপের কারণে অধিক সংবেদনশীল হয়ে যায়।[৬৭]

জলবায়ু পরিবর্তনের ফলে সৃষ্ট সমস্যা থেকে পশুসম্পদ রক্ষায় বিভিন্ন ধরনের পদক্ষেপ নেয়া যেতে পারে। যেমন, পশুর পানির সরবরাহ বাড়ানো, খোলা আকাশের নিচে রাখা পশুদের জন্য উন্নত আশ্রয়ের ব্যবস্থা করা এবং বদ্ধ স্থানে রাখা পশুর জন্য বায়ু চলাচলের সুবিধা উন্নত করা ইত্যাদি।[৬৮] বিশেষ ধরণের কুলিং সিস্টেম স্থাপন করা সবচেয়ে ব্যয়বহুল পদক্ষেপ, তবে এটি ভবিষ্যতের উষ্ণায়নের প্রভাব পুরোপুরি প্রতিরোধ করতে সক্ষম।[৬৯]

শুধুমাত্র যুক্তরাষ্ট্রেই, ২০০৩ সালে তাপজনিত চাপের কারণে প্রাণিসম্পদ খাতে আর্থিক ক্ষতির পরিমাণ ছিল প্রায় ১.৬৯ থেকে ২.৩৬ বিলিয়ন ডলার।[৭০] সমসাময়িক অভিযোজন ব্যবস্থাগুলির কার্যকারিতা সম্পর্কে বিভিন্ন ধারণার ভিন্নতার কারণে এই ক্ষতির পরিমাণে তারতম্য দেখা যায়। তা সত্ত্বেও, কিছু পর্যালোচনা থেকে জানা যায় যে যুক্তরাষ্ট্র হলো জলবায়ু পরিবর্তনের নেতিবাচক প্রভাবে সৃষ্ট খাদ্য সুরক্ষা বিপর্যয়ের সবচেয়ে কম ঝুঁকিপূর্ণ দেশ। কারণ, যদিও প্রাণিসম্পদের এক্সপোজার এবং এ সম্পর্কিত সামাজিক সংবেদনশীলতার দিক থেকে যুক্তরাষ্ট্রের অবস্থান বিশ্বে মাঝারি পর্যায়ে, তবুও উচ্চ জিডিপি এবং উন্নয়নের স্তরের কারণে তাদের অভিযোজন ক্ষমতা সবচেয়ে বেশি। একই কারণে জাপান এবং ইউরোপের দেশগুলিও কম ঝুঁকিপূর্ণ রাষ্ট্রের অন্তর্ভুক্ত।

অন্যদিকে, মঙ্গোলিয়ান পশুসম্পদ যেভাবে জলবায়ু পরিবর্তনের সম্মুখীন হয় তা আমেরিকান প্রাণিসম্পদের থেকে খুব আলাদা নয়; তবে মঙ্গোলিয়ান সমাজে পশুপালনের অত্যন্ত গুরুত্ব এবং তাদের সীমিত অভিযোজন ক্ষমতা বিবেচনায় মঙ্গোলিয়াকে বিশ্বের অন্যতম ঝুঁকিপূর্ণ দেশ হিসেবে চিহ্নিত করা হয়। সাব-সাহারান আফ্রিকার দেশগুলো সাধারণত প্রাণিসম্পদ এক্সপোজার, কম অভিযোজন ক্ষমতা এবং তাদের সমাজে পশুপালনের গুরুত্বের কারণে উচ্চ সংবেদনশীলতায় ভোগে। এই সমস্যাটি বিশেষভাবে পূর্ব আফ্রিকার দেশগুলির জন্য বেশ তীব্র,[৭১] যেখানে ২০৭০ সালের পরে বিভিন্ন জলবায়ু পরিবর্তনের ধারণার উপর ভিত্তি করে ৪ থেকে ১৯% পশুপালন এলাকার "বিপজ্জনক" তাপীয় চাপের ঘটনা "উল্লেখযোগ্যভাবে" বেড়ে যাবে বলে আশঙ্কা করা হচ্ছে।[৭২] তীব্রতম ধারণা SSP5-8.5 অনুসারে, ২০৫০ সালের মধ্যেই পশুসম্পদ ধারণক্ষম জমির পরিমাণ হ্রাস পাবে এ বিষয়ে উচ্চমাত্রার আস্থা রয়েছে, কারণ কিছু কিছু স্থানে পশুপালনের জন্য তাপের চাপ ইতিমধ্যেই অসহনীয় হয়ে উঠবে।[৭৩]:৭৪৮

তথ্যসূত্র

  1. "Climate change added $4bn to damage of Japan's Typhoon Hagibis"World Weather Attribution (ইংরেজি ভাষায়)। ১৮ মে ২০২২। সংগ্রহের তারিখ ১ অক্টোবর ২০২৩ 
  2. Hille K (২৫ এপ্রিল ২০১৬)। "Carbon Dioxide Fertilization Greening Earth, Study Finds"NASA। সংগ্রহের তারিখ ২০২০-১২-২৭ 
  3. "Human-induced climate change increased drought severity in Horn of Africa"World Weather Attribution (ইংরেজি ভাষায়)। ২৭ এপ্রিল ২০২৩। সংগ্রহের তারিখ ১ অক্টোবর ২০২৩ 
  4. উদ্ধৃতি ত্রুটি: <ref> ট্যাগ বৈধ নয়; Zacarias2020 নামের সূত্রটির জন্য কোন লেখা প্রদান করা হয়নি
  5. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  6. Gaupp, Franziska; Hall, Jim; Mitchell, Dann; Dadson, Simon (২৩ মে ২০১৯)। "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming" (পিডিএফ)Agricultural Systems175: 34–45। hdl:1983/d5df7241-3564-43de-b9ef-31a103c7a46dঅবাধে প্রবেশযোগ্যএসটুসিআইডি 182687026ডিওআই:10.1016/j.agsy.2019.05.010বিবকোড:2019AgSys.175...34G 
  7. Kornhuber, Kai; Lesk, Corey; Schleussner, Carl F.; Jägermeyr, Jonas; Pfleiderer, Peter; Horton, Radley M. (৪ জুলাই ২০২৩)। "Risks of synchronized low yields are underestimated in climate and crop model projections"Nature Communications14 (1): 3528। ডিওআই:10.1038/s41467-023-38906-7অবাধে প্রবেশযোগ্যপিএমআইডি 37402712 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 10319847অবাধে প্রবেশযোগ্য |pmc= এর মান পরীক্ষা করুন (সাহায্য)বিবকোড:2023NatCo..14.3528K 
  8. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  9. Ainsworth, Elizabeth A.; Long, Stephen P. (২ নভেম্বর ২০২০)। "30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?"। Global Change Biology (ইংরেজি ভাষায়)। 27 (1): 27–49। এসটুসিআইডি 226235328ডিওআই:10.1111/gcb.15375পিএমআইডি 33135850 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  10. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  11. Biemans H, Siderius C, Lutz AF, Nepal S, Ahmad B, Hassan T, ও অন্যান্য (জুলাই ২০১৯)। "Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain"Nature Sustainability (ইংরেজি ভাষায়)। 2 (7): 594–601। আইএসএসএন 2398-9629এসটুসিআইডি 199110415ডিওআই:10.1038/s41893-019-0305-3বিবকোড:2019NatSu...2..594B 
  12. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  13. Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C.; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold (১৫ আগস্ট ২০১৭)। "Temperature increase reduces global yields of major crops in four independent estimates"Proceedings of the National Academy of Sciences of the United States of America (ইংরেজি ভাষায়)। 114 (35): 9326–9331। ডিওআই:10.1073/pnas.1701762114অবাধে প্রবেশযোগ্যপিএমআইডি 28811375পিএমসি 5584412অবাধে প্রবেশযোগ্যবিবকোড:2017PNAS..114.9326Z 
  14. van Dijk, Michiel; Morley, Tom; Rau, Marie Luise; Saghai, Yashar (২১ জুলাই ২০২১)। "A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050"। Nature Food4 (7): 416–426। ডিওআই:10.1038/s43016-021-00322-9অবাধে প্রবেশযোগ্যপিএমআইডি 37117684 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  15. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  16. FAO, IFAD, UNICEF, WFP and WHO (২০২১)। The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all, In brief (প্রতিবেদন)। FAO। আইএসবিএন 978-92-5-134634-1ডিওআই:10.4060/cb5409en 
  17. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  18. Janssens, Charlotte; Havlík, Petr; Krisztin, Tamás; Baker, Justin; Frank, Stefan; Hasegawa, Tomoko; Leclère, David; Ohrel, Sara; Ragnauth, Shaun; Schmid, Erwin; Valin, Hugo; Van Lipzig, Nicole; Maertens, Miet (২০ জুলাই ২০২০)। "Global hunger and climate change adaptation through international trade"Nature Climate Change10 (9): 829–835। ডিওআই:10.1038/s41558-020-0847-4অবাধে প্রবেশযোগ্যপিএমআইডি 33564324 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 7869491অবাধে প্রবেশযোগ্য |pmc= এর মান পরীক্ষা করুন (সাহায্য)বিবকোড:2020NatCC..10..829J 
  19. van Dijk, Michiel; Morley, Tom; Rau, Marie Luise; Saghai, Yashar (২১ জুলাই ২০২১)। "A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050"। Nature Food4 (7): 416–426। ডিওআই:10.1038/s43016-021-00322-9অবাধে প্রবেশযোগ্যপিএমআইডি 37117684 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  20. Hasegawa, Tomoko; Sakurai, Gen; Fujimori, Shinichiro; Takahashi, Kiyoshi; Hijioka, Yasuaki; Masui, Toshihiko (৯ আগস্ট ২০২১)। "Extreme climate events increase risk of global food insecurity and adaptation needs"। Nature Food2 (8): 587–595। এসটুসিআইডি 238695572 Check |s2cid= value (সাহায্য)ডিওআই:10.1038/s43016-021-00335-4পিএমআইডি 37118168 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  21. Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila (১ মার্চ ২০১৯)। "State-of-the-art global models underestimate impacts from climate extremes"Nature Communications10 (1): 1005। ডিওআই:10.1038/s41467-019-08745-6অবাধে প্রবেশযোগ্যপিএমআইডি 30824763পিএমসি 6397256অবাধে প্রবেশযোগ্যবিবকোড:2019NatCo..10.1005S 
  22. Kummu, Matti; Heino, Matias; Taka, Maija; Varis, Olli; Viviroli, Daniel (২১ মে ২০২১)। "Climate change risks pushing one-third of global food production outside the safe climatic space"One Earth4 (5): 720–729। ডিওআই:10.1016/j.oneear.2021.04.017অবাধে প্রবেশযোগ্যপিএমআইডি 34056573 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 8158176অবাধে প্রবেশযোগ্য |pmc= এর মান পরীক্ষা করুন (সাহায্য)বিবকোড:2021OEart...4..720K 
  23. Mycoo, M., M. Wairiu, D. Campbell, V. Duvat, Y. Golbuu, S. Maharaj, J. Nalau, P. Nunn, J. Pinnegar, and O. Warrick, 2022: Chapter 3: Mitigation pathways compatible with long-term goals. In Climate Change 2022: Mitigation of Climate Change [ K. Riahi, R.Schaeffer, J.Arango, K. Calvin, C. Guivarch, T. Hasegawa, K. Jiang, E. Kriegler, R. Matthews, G. P. Peters, A. Rao, S. Robertson, A. M. Sebbit, J. Steinberger, M. Tavoni, D. P. van Vuuren]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 463–464 |doi= 10.1017/9781009157926.005
  24. Bradshaw, Corey J. A.; Ehrlich, Paul R.; Beattie, Andrew; Ceballos, Gerardo; Crist, Eileen; Diamond, Joan; Dirzo, Rodolfo; Ehrlich, Anne H.; Harte, John; Harte, Mary Ellen; Pyke, Graham; Raven, Peter H.; Ripple, William J.; Saltré, Frédérik; Turnbull, Christine; Wackernagel, Mathis; Blumstein, Daniel T. (২০২১)। "Underestimating the Challenges of Avoiding a Ghastly Future"। Frontiers in Conservation Science1ডিওআই:10.3389/fcosc.2020.615419অবাধে প্রবেশযোগ্য 
  25. Oppenheimer M, Campos M, Warren R, Birkmann J, Luber G, O'Neill B, Takahashi K (২০১৪)। "Emergent risks and key vulnerabilities" (পিডিএফ)। Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B। Climate Change 2014: Impacts, Adaptation, and Vulnerability। Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press। পৃষ্ঠা 1039–1099। Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
  26. Niles, Meredith T.; Ahuja, Richie; Barker, Todd; Esquivel, Jimena; Gutterman, Sophie; Heller, Martin C.; Mango, Nelson; Portner, Diana; Raimond, Rex; Tirado, Cristina; Vermeulen, Sonja (জুন ২০১৮)। "Climate change mitigation beyond agriculture: a review of food system opportunities and implications"। Renewable Agriculture and Food Systems (ইংরেজি ভাষায়)। 33 (3): 297–308। আইএসএসএন 1742-1705এসটুসিআইডি 89605314ডিওআই:10.1017/S1742170518000029অবাধে প্রবেশযোগ্য 
  27. Anyiam, P. N.; Adimuko, G. C.; Nwamadi, C. P.; Guibunda, F. A.; Kamale, Y. J. (৩১ ডিসেম্বর ২০২১)। "Sustainable Food System Transformation in a Changing Climate"Nigeria Agricultural Journal (ইংরেজি ভাষায়)। 52 (3): 105–115। আইএসএসএন 0300-368X 
  28. Brás TA, Seixas J, Carvalhais N, Jägermeyr J (১৮ মার্চ ২০২১)। "Severity of drought and heatwave crop losses tripled over the last five decades in Europe"। Environmental Research Letters (ইংরেজি ভাষায়)। 16 (6): 065012। আইএসএসএন 1748-9326ডিওআই:10.1088/1748-9326/abf004অবাধে প্রবেশযোগ্যবিবকোড:2021ERL....16f5012B  Available under CC BY 4.0.
  29. Burroughs, Charles H; Montes, Christopher M; Moller, Christopher A; Mitchell, Noah G; Michael, Anne Marie; Peng, Bin; Kimm, Hyungsuk; Pederson, Taylor L; Lipka, Alexander E; Bernacchi, Carl J; Guan, Kaiyu; Ainsworth, Elizabeth A (১৩ মার্চ ২০২৩)। "Reductions in leaf area index, pod production, seed size, and harvest index drive yield loss to high temperatures in soybean"। Journal of Experimental Botany74 (5): 1629–1641। ডিওআই:10.1093/jxb/erac503অবাধে প্রবেশযোগ্যপিএমআইডি 36571807 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  30. Tubiello FN, Soussana JF, Howden SM (ডিসেম্বর ২০০৭)। "Crop and pasture response to climate change"Proceedings of the National Academy of Sciences of the United States of America104 (50): 19686–19690। ডিওআই:10.1073/pnas.0701728104অবাধে প্রবেশযোগ্যপিএমআইডি 18077401পিএমসি 2148358অবাধে প্রবেশযোগ্যবিবকোড:2007PNAS..10419686T 
  31. Bezner Kerr, R., T. Hasegawa, R. Lasco, I. Bhatt, D. Deryng, A. Farrell, H. Gurney-Smith, H. Ju, S. Lluch-Cota, F. Meza, G. Nelson, H. Neufeldt, and P. Thornton, 2022: Chapter 5: Food, Fibre, and Other Ecosystem Products. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, doi:10.1017/9781009325844.007.
  32. Pradhan, Prajal; Seydewitz, Tobias; Zhou, Bin; Lüdeke, Matthias K. B.; Kropp, Juergen P. (১৮ জুলাই ২০২২)। "Climate extremes are becoming more frequent, co-occurring, and persistent in Europe"। Anthropocene Science1 (2): 264–277। ডিওআই:10.1007/s44177-022-00022-4অবাধে প্রবেশযোগ্যবিবকোড:2022AnthS...1..264P 
  33. "Europe's heat and drought crop losses tripled in 50 years: study"phys.org (ইংরেজি ভাষায়)। সংগ্রহের তারিখ ১৯ এপ্রিল ২০২১ 
  34. Brás TA, Seixas J, Carvalhais N, Jägermeyr J (১৮ মার্চ ২০২১)। "Severity of drought and heatwave crop losses tripled over the last five decades in Europe"। Environmental Research Letters (ইংরেজি ভাষায়)। 16 (6): 065012। আইএসএসএন 1748-9326ডিওআই:10.1088/1748-9326/abf004অবাধে প্রবেশযোগ্যবিবকোড:2021ERL....16f5012B  Available under CC BY 4.0.
  35. Berwyn B (২৮ জুলাই ১০১৮)। "This Summer's Heat Waves Could Be the Strongest Climate Signal Yet" (Climate change)। Inside Climate News। সংগ্রহের তারিখ ৯ আগস্ট ২০১৮ 
  36. Higgins E (২৯ মে ২০১৯)। "Climate Crisis Brings Historic Delay to Planting Season, Pressuring Farmers and Food Prices"। Ecowatch। সংগ্রহের তারিখ ৩০ মে ২০১৯ 
  37. Hope, Alan (১৬ জুলাই ২০২১)। "Heavy rainfall and flash floods: another catastrophe for farmers?"The Brussels Times। Brussels। ১৬ জুলাই ২০২১ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১৬ জুলাই ২০২১ 
  38. Fu, Jin; Jian, Yiwei; Wang, Xuhui; Li, Laurent; Ciais, Philippe; Zscheischler, Jakob; Wang, Yin; Tang, Yanhong; Müller, Christoph; Webber, Heidi; Yang, Bo; Wu, Yali; Wang, Qihui; Cui, Xiaoqing; Huang, Weichen; Liu, Yongqiang; Zhao, Pengjun; Piao, Shilong; Zhou, Feng (৪ মে ২০২৩)। "Extreme rainfall reduces one-twelfth of China's rice yield over the last two decades" (পিডিএফ)Nature Food4 (5): 416–426। এসটুসিআইডি 258508344 Check |s2cid= value (সাহায্য)ডিওআই:10.1038/s43016-023-00753-6পিএমআইডি 37142747 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  39. Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia। Washington, D.C.: National Academies Press। ২০১১-০২-১১। আইএসবিএন 978-0-309-15176-4ডিওআই:10.17226/12877 
  40. "Corn and Soybean Temperature Response"। ১২ মে ২০১৩ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ৩০ মে ২০১৩ 
  41. Connor JD, Schwabe K, King D, Knapp K (মে ২০১২)। "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation"। Ecological Economics77: 149–157। ডিওআই:10.1016/j.ecolecon.2012.02.021 
  42. Tubiello FN, Rosenzweig C (২০০৮)। "Developing climate change impact metrics for agriculture"The Integrated Assessment Journal8 (1): 165–184। 
  43. Tubiello FN, Soussana JF, Howden SM (ডিসেম্বর ২০০৭)। "Crop and pasture response to climate change"Proceedings of the National Academy of Sciences of the United States of America104 (50): 19686–19690। ডিওআই:10.1073/pnas.0701728104অবাধে প্রবেশযোগ্যপিএমআইডি 18077401পিএমসি 2148358অবাধে প্রবেশযোগ্যবিবকোড:2007PNAS..10419686T 
  44. Tubiello FN, Rosenzweig C (২০০৮)। "Developing climate change impact metrics for agriculture"The Integrated Assessment Journal8 (1): 165–184। 
  45. Epstein P, Ferber D (২০১১)। Changing Planet, Changing Health: How the Climate Crisis Threatens Our Health and what We Can Do about itবিনামূল্যে নিবন্ধন প্রয়োজন। University of California Press। আইএসবিএন 978-0-520-26909-5 [পৃষ্ঠা নম্বর প্রয়োজন]
  46. Thomson LJ, Macfadyen S, Hoffmann AA (মার্চ ২০১০)। "Predicting the effects of climate change on natural enemies of agricultural pests"। Biological Control52 (3): 296–306। ডিওআই:10.1016/j.biocontrol.2009.01.022বিবকোড:2010BiolC..52..296T 
  47. "Earliest Blooms Recorded in U.S. Due to Global Warming"National Geographic News (ইংরেজি ভাষায়)। ১৭ জানুয়ারি ২০১৩। ২২ সেপ্টেম্বর ২০১৯ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৮ নভেম্বর ২০২০ 
  48. Kulshreshtha SN (মার্চ ২০১১)। "Climate Change, Prairie Agriculture and Prairie Economy: The new normal"। Canadian Journal of Agricultural Economics59 (1): 19–44। ডিওআই:10.1111/j.1744-7976.2010.01211.xবিবকোড:2011CaJAE..59...19K 
  49. Lemmen DS, Warren FJ, সম্পাদকগণ (২০০৪)। Climate Change Impacts and Adaptation: A Canadian Perspective (পিডিএফ) (প্রতিবেদন)। Natural Resources Canadaআইএসবিএন 0-662-33123-0 [পৃষ্ঠা নম্বর প্রয়োজন]
  50. Meng Q, Hou P, Lobell DB, Wang H, Cui Z, Zhang F, Chen X (২০১৩)। "The benefits of recent warming for maize production in high latitude China"। Climatic Change122 (1–2): 341–349। hdl:10.1007/s10584-013-1009-8অবাধে প্রবেশযোগ্যএসটুসিআইডি 53989985ডিওআই:10.1007/s10584-013-1009-8 
  51. Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C.; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold (১৫ আগস্ট ২০১৭)। "Temperature increase reduces global yields of major crops in four independent estimates"Proceedings of the National Academy of Sciences of the United States of America (ইংরেজি ভাষায়)। 114 (35): 9326–9331। ডিওআই:10.1073/pnas.1701762114অবাধে প্রবেশযোগ্যপিএমআইডি 28811375পিএমসি 5584412অবাধে প্রবেশযোগ্যবিবকোড:2017PNAS..114.9326Z 
  52. Lallo, Cicero H. O.; Cohen, Jane; Rankine, Dale; Taylor, Michael; Cambell, Jayaka; Stephenson, Tannecia (২৪ মে ২০১৮)। "Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean"Regional Environmental Change (ইংরেজি ভাষায়)। 18 (8): 2329–2340। এসটুসিআইডি 158167267ডিওআই:10.1007/s10113-018-1359-xঅবাধে প্রবেশযোগ্য 
  53. Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: Chapter 5: Food, Fibre and Other Ecosystem Products. In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012
  54. Lacetera, Nicola (২০১৯-০১-০৩)। "Impact of climate change on animal health and welfare"Animal Frontiers (ইংরেজি ভাষায়)। 9 (1): 26–31। আইএসএসএন 2160-6056ডিওআই:10.1093/af/vfy030পিএমআইডি 32002236 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 6951873অবাধে প্রবেশযোগ্য 
  55. Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: Chapter 5: Food, Fibre and Other Ecosystem Products. In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012
  56. Lallo, Cicero H. O.; Cohen, Jane; Rankine, Dale; Taylor, Michael; Cambell, Jayaka; Stephenson, Tannecia (২৪ মে ২০১৮)। "Characterizing heat stress on livestock using the temperature humidity index (THI)—prospects for a warmer Caribbean"Regional Environmental Change (ইংরেজি ভাষায়)। 18 (8): 2329–2340। এসটুসিআইডি 158167267ডিওআই:10.1007/s10113-018-1359-xঅবাধে প্রবেশযোগ্য 
  57. Lacetera, Nicola (২০১৯-০১-০৩)। "Impact of climate change on animal health and welfare"Animal Frontiers (ইংরেজি ভাষায়)। 9 (1): 26–31। আইএসএসএন 2160-6056ডিওআই:10.1093/af/vfy030পিএমআইডি 32002236 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 6951873অবাধে প্রবেশযোগ্য 
  58. Lacetera, Nicola (২০১৯-০১-০৩)। "Impact of climate change on animal health and welfare"Animal Frontiers (ইংরেজি ভাষায়)। 9 (1): 26–31। আইএসএসএন 2160-6056ডিওআই:10.1093/af/vfy030পিএমআইডি 32002236 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 6951873অবাধে প্রবেশযোগ্য 
  59. Bett, B.; Kiunga, P.; Gachohi, J.; Sindato, C.; Mbotha, D.; Robinson, T.; Lindahl, J.; Grace, D. (২৩ জানুয়ারি ২০১৭)। "Effects of climate change on the occurrence and distribution of livestock diseases"Preventive Veterinary Medicine (ইংরেজি ভাষায়)। 137 (Pt B): 119–129। ডিওআই:10.1016/j.prevetmed.2016.11.019পিএমআইডি 28040271 
  60. Lacetera, Nicola (২০১৯-০১-০৩)। "Impact of climate change on animal health and welfare"Animal Frontiers (ইংরেজি ভাষায়)। 9 (1): 26–31। আইএসএসএন 2160-6056ডিওআই:10.1093/af/vfy030পিএমআইডি 32002236 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 6951873অবাধে প্রবেশযোগ্য 
  61. Bin-Jumah, May; Abd El-Hack, Mohamed E.; Abdelnour, Sameh A.; Hendy, Yasmeen A.; Ghanem, Hager A.; Alsafy, Sara A.; Khafaga, Asmaa F.; Noreldin, Ahmed E.; Shaheen, Hazem; Samak, Dalia; Momenah, Maha A.; Allam, Ahmed A.; AlKahtane, Abdullah A.; Alkahtani, Saad; Abdel-Daim, Mohamed M.; Aleya, Lotfi (১৯ ডিসেম্বর ২০১৯)। "Potential use of chromium to combat thermal stress in animals: A review"Science of the Total Environment (ইংরেজি ভাষায়)। 707: 135996। এসটুসিআইডি 209447429ডিওআই:10.1016/j.scitotenv.2019.135996অবাধে প্রবেশযোগ্যপিএমআইডি 31865090 
  62. Lacetera, Nicola (২০১৯-০১-০৩)। "Impact of climate change on animal health and welfare"Animal Frontiers (ইংরেজি ভাষায়)। 9 (1): 26–31। আইএসএসএন 2160-6056ডিওআই:10.1093/af/vfy030পিএমআইডি 32002236 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 6951873অবাধে প্রবেশযোগ্য 
  63. Foroushani, Sepehr; Amon, Thomas (১১ জুলাই ২০২২)। "Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology"International Journal of Biometeorology (ইংরেজি ভাষায়)। 66 (9): 1811–1827। ডিওআই:10.1007/s00484-022-02321-2পিএমআইডি 35821443 |pmid= এর মান পরীক্ষা করুন (সাহায্য)পিএমসি 9418108অবাধে প্রবেশযোগ্য |pmc= এর মান পরীক্ষা করুন (সাহায্য)বিবকোড:2022IJBm...66.1811F 
  64. Herbut, Piotr; Angrecka, Sabina; Walczak, Jacek (২৭ অক্টোবর ২০১৮)। "Environmental parameters to assessing of heat stress in dairy cattle—a review"International Journal of Biometeorology (ইংরেজি ভাষায়)। 62 (12): 2089–2097। ডিওআই:10.1007/s00484-018-1629-9পিএমআইডি 30368680পিএমসি 6244856অবাধে প্রবেশযোগ্যবিবকোড:2018IJBm...62.2089H 
  65. Li, Jinghui; Narayanan, Vinod; Kebreab, Ermias; Dikmen, Sedal; Fadel, James G. (২৩ জুলাই ২০২১)। "A mechanistic thermal balance model of dairy cattle"Biosystems Engineering (ইংরেজি ভাষায়)। 209: 256–270। ডিওআই:10.1016/j.biosystemseng.2021.06.009অবাধে প্রবেশযোগ্য 
  66. Schauberger, Günther; Mikovits, Christian; Zollitsch, Werner; Hörtenhuber, Stefan J.; Baumgartner, Johannes; Niebuhr, Knut; Piringer, Martin; Knauder, Werner; Anders, Ivonne; Andre, Konrad; Hennig-Pauka, Isabel; Schönhart, Martin (২২ জানুয়ারি ২০১৯)। "Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs"Climatic Change (ইংরেজি ভাষায়)। 156 (4): 567–587। এসটুসিআইডি 201103432ডিওআই:10.1007/s10584-019-02525-3অবাধে প্রবেশযোগ্যবিবকোড:2019ClCh..156..567S 
  67. Mikovits, Christian; Zollitsch, Werner; Hörtenhuber, Stefan J.; Baumgartner, Johannes; Niebuhr, Knut; Piringer, Martin; Anders, Ivonne; Andre, Konrad; Hennig-Pauka, Isabel; Schönhart, Martin; Schauberger, Günther (২২ জানুয়ারি ২০১৯)। "Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe"International Journal of Biometeorology (ইংরেজি ভাষায়)। 63 (2): 221–230। এসটুসিআইডি 58951606ডিওআই:10.1007/s00484-018-01655-0অবাধে প্রবেশযোগ্যপিএমআইডি 30671619বিবকোড:2019IJBm...63..221M 
  68. "Caring for animals during extreme heat"Agriculture Victoria। ১৮ নভেম্বর ২০২১। সংগ্রহের তারিখ ১৯ অক্টোবর ২০২২ 
  69. Schauberger, Günther; Mikovits, Christian; Zollitsch, Werner; Hörtenhuber, Stefan J.; Baumgartner, Johannes; Niebuhr, Knut; Piringer, Martin; Knauder, Werner; Anders, Ivonne; Andre, Konrad; Hennig-Pauka, Isabel; Schönhart, Martin (২২ জানুয়ারি ২০১৯)। "Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs"Climatic Change (ইংরেজি ভাষায়)। 156 (4): 567–587। এসটুসিআইডি 201103432ডিওআই:10.1007/s10584-019-02525-3অবাধে প্রবেশযোগ্যবিবকোড:2019ClCh..156..567S 
  70. St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. (জুন ২০০৩)। "Economic Losses from Heat Stress by US Livestock Industries"Journal of Dairy Science (ইংরেজি ভাষায়)। 86: E52–E77। ডিওআই:10.3168/jds.S0022-0302(03)74040-5অবাধে প্রবেশযোগ্য 
  71. Godber, Olivia F.; Wall, Richard (১ এপ্রিল ২০১৪)। "Livestock and food security: vulnerability to population growth and climate change"Global Change Biology (ইংরেজি ভাষায়)। 20 (10): 3092–3102। ডিওআই:10.1111/gcb.12589পিএমআইডি 24692268পিএমসি 4282280অবাধে প্রবেশযোগ্যবিবকোড:2014GCBio..20.3092G 
  72. Rahimi, Jaber; Mutua, John Yumbya; Notenbaert, An M. O.; Marshall, Karen; Butterbach-Bahl, Klaus (১৮ ফেব্রুয়ারি ২০২১)। "Heat stress will detrimentally impact future livestock production in East Africa"Nature Food (ইংরেজি ভাষায়)। 2 (2): 88–96। এসটুসিআইডি 234031623 Check |s2cid= value (সাহায্য)ডিওআই:10.1038/s43016-021-00226-8পিএমআইডি 37117410 |pmid= এর মান পরীক্ষা করুন (সাহায্য) 
  73. Kerr R.B., Hasegawa T., Lasco R., Bhatt I., Deryng D., Farrell A., Gurney-Smith H., Ju H., Lluch-Cota S., Meza F., Nelson G., Neufeldt H., Thornton P., 2022: Chapter 5: Food, Fibre and Other Ecosystem Products. In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke,V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1457–1579 |doi=10.1017/9781009325844.012