সহ-মৌলিক

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন

সহ-মৌলিক (Co-Prime) সংখ্যা হল এমন দুইটি ধনাত্নক পূর্ণ সংখ্যা যাদের মধ্যে ১ ব্যতীত কোনো সাধারণ উৎপাদক নেই।

উদাহরণ[সম্পাদনা]

৫ এবং ৭, এদের মধ্যে ১ ছাড়া কোনো সাধারণ উৎপাদক নেই। দুইটি মৌলিক সংখ্যা সর্বদা সহ-মৌলিক হবে। এছাড়া একটি মৌলিক সংখ্যা ও যৌগিক সংখ্যাও সহ-মৌলিক হতে পারে। যেমনঃ ৫ এবং ৬। দুইটি যৌগিক সংখ্যা অথবা একটি জোড় অপরটি বিজোড় হলেও সহ-মৌলিক হতে পারে। যেমনঃ ৮ এবং ৯। দুইটি জোড় সংখ্যা হলে তাদের মধ্যে সাধারণ উৎপাদক ২ থাকবে যা সহ-মৌলিক হবে না। অর্থাৎ সহ-মৌলিক সংখ্যাদ্বয় ভিন্ন দুইটি সংখ্যা হলেও তারা একই সাথে একটি মৌলিক সংখ্যার মত আচরণ করে।

১৬=১*২*২*২*২ ২৫=১*৫*৫ এখানে ১৬ এর মৌলিক উৎপাদক গুলো ১,২,২,২,২। ২৫ এর মৌলিক উৎপাদকগুলো ১,৫,৫। এদের মধ্যে ১ ছাড়া অন্য কোন সাধারণ গুণনীয়ক নেই। সুতরাং ১৬ ও ২৫ পরস্পর সহ-মৌলিক।

তথ্যসূত্র[সম্পাদনা]