ভিভিইআর

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন
WWER-1000 (or VVER-1000 as a direct transliteration of Russian ВВЭР-1000) is a 1000 MWe Russian nuclear power reactor of PWR type.

ওয়াটার-ওয়াটার পাওয়ার রিঅ্যাক্টর (ডব্লিউডব্লিউভিইআর),[১] অথবা ভিভিইআর (রুশ: Водо-водяной энергетический реактор; রূপান্তর ভোদো-ওয়াদিওনি এনারগেটিস্স্কি রিঅ্যাক্তর; ইংরেজি: ওয়াটার-ওয়াটার পাওয়ার রিঅ্যাক্টর) হল প্রাথমিকভাবে বিকশিত চাপযুক্ত জল চুল্লী ডিজাইনের একটি সিরিজ, যা সোভিয়েত ইউনিয়নে (এখন রাশিয়া) ওক্ব গিডরপ্রেস দ্বারা উন্নিত হয়।[২] এর বিদ্যুৎ উৎপাদন ক্ষমতা ৭০ থেকে ১২০০ মেগাওয়াট পর্যন্ত, যা ১৭০০ মেগাওয়াট পর্যন্ত বাড়ানো যায়।[৩] ভিভিইআর পাওয়ার স্টেশন ছিল বা দ্বারা ভবিষ্যতে ব্যবহৃত হবে আর্মেনিয়া, বাংলাদেশ, বেলারুশ, বুলগেরিয়া, চীন, চেক প্রজাতন্ত্র, মিশর, ফিনল্যান্ড, জার্মানি, জর্দান, হাঙ্গেরি, ভারত, ইরান, স্লোভাকিয়া, ইউক্রেন, রাশিয়া, তুরস্ক এবং ভিয়েতনাম

ইতিহাস[সম্পাদনা]

প্রথম ভিভিইআর ১৯৭০ সালে নির্মিত হয়েছিল। ভিভিইআর-৪৪০ মডেল ভি২৩০ সবচেয়ে সাধারণ নকশা ছিল, ৪০০ মেগাওয়াট বৈদ্যুতিক শক্তি উত্‍পন্ন হত। ভি২৩০ একটি অনুভূমিক বাষ্প জেনারেটর সঙ্গে ছয় প্রাথমিক কুল্যান্ট নিয়োগ করে। ভিভিইআর-৪৪০ এর একটি সংশোধিত সংস্করণ, মডেল ভি২১৩, সোভিয়েত ডিজাইনারদের দ্বারা গৃহীত প্রথম পরমাণু সুরক্ষিত পণ্য ছিল। এই মডেল অন্তর্ভুক্ত জরুরী কোর কুলিং এবং অক্জিলিয়ারী খাদ্যে ব্যবস্থা হিসেবে আপগ্রেড দুর্ঘটনা স্থানীয়করণ সিস্টেম।[৪]

১৯৭৫ সালের পরে বৃহত্তর ভিভিইআর-১০০০ তৈরি করা হয়েছিল এবং একটি স্প্রে বাষ্প দমন সিস্টেমের সাথে কনট্রেনমেন্ট-টাইপ কাঠামোর মধ্যে একটি চার লুপ সিস্টেম রয়েছে। ভিভিইআর চুল্লী ডিজাইন স্বয়ংক্রিয় নিয়ন্ত্রণ, প্যাসিভ নিরাপত্তা এবং পশ্চিমা তৃতীয় প্রজন্মের পারমাণবিক চুল্লি সঙ্গে যুক্ত প্রতিরোধ সিস্টেম এর সাথে অন্তর্ভুক্ত করা হয়।

ভিভিইআর-১২০০ বর্তমান সংস্করণটি নির্মাণের জন্য প্রস্তাবিত, ভিভিইআর-১০০০ এর বিবর্তন হচ্ছে ক্ষমতা বৃদ্ধি, যার আউটপুট ১২০০ মেগাওয়াট (মোট) এবং অতিরিক্ত প্যাসিভ নিরাপত্তা বৈশিষ্ট্য প্রদান করে।[৫]

২০১২ সালে, রোসাটম বলে যে, ভবিষ্যতে এটি ব্রিটিশ এবং মার্কিন নিয়ন্ত্রক কর্তৃপক্ষের সঙ্গে অভিপ্রেত হবে। যদিও, একটি ব্রিটিশ লাইসেন্সের জন্য ২০১৫ এর আগে আবেদন করা অসম্ভাব্য ছিল।[৬][৭]

নকশা[সম্পাদনা]

The arrangement of hexahedral fuel assemblies compared to a Westinghouse PWR design

The Russian abbreviation VVER stands for 'water-water energy reactor' (i.e. water-cooled water-moderated energy reactor). The design is a type of pressurised water reactor (PWR). The main distinguishing features of the VVER[৩] compared to other PWRs are:

  • Horizontal steam generators
  • Hexagonal fuel assemblies
  • No bottom penetrations in the pressure vessel
  • High-capacity pressurisers providing a large reactor coolant inventory

Reactor fuel rods are fully immersed in water kept at 15 MPa pressure so that it does not boil at the normal (220 to over 300 °C) operating temperatures. Water in the reactor serves both as a coolant and a moderator which is an important safety feature. Should coolant circulation fail, the neutron moderation effect of the water diminishes, reducing reaction intensity and compensating for loss of cooling, a condition known as negative void coefficient. Later versions of the reactors are encased in massive steel pressure shells. Fuel is low enriched (ca. 2.4–4.4% 235U) uranium dioxide (UO2) or equivalent pressed into pellets and assembled into fuel rods.

Reactivity is controlled by control rods that can be inserted into the reactor from above. These rods are made from a neutron absorbing material and, depending on depth of insertion, hinder the chain reaction. If there is an emergency, a reactor shutdown can be performed by full insertion of the control rods into the core.

Primary cooling circuits[সম্পাদনা]

Layout of the four primary cooling circuits and the pressurizer of a VVER-1000
Construction of a VVER-1000 reactor vessel at Atommash.

As stated above, the water in the primary circuits is kept under a constant elevated pressure to avoid its boiling. Since the water transfers all the heat from the core and is irradiated, the integrity of this circuit is crucial. Four main components can be distinguished:

  1. Reactor vessel: Water flows through the fuel rod assemblies which are heated by the nuclear chain reaction.
  2. Volume compensator (Pressurizer): To keep the water under constant but controlled pressure, the volume compensator regulates the pressure by controlling the equilibrium between saturated steam and water using electrical heating and relief valves.
  3. Steam Generator: In the steam generator, the heat from the primary coolant water is used to boil the water in the secondary circuit.
  4. Pump: The pump ensures the proper circulation of the water through the circuit.

To provide for the continued cooling of the reactor core in emergency situations the primary cooling is designed with redundancy.

Secondary circuit and electrical output[সম্পাদনা]

The secondary circuit also consists of different subsystems:

  1. Steam Generator: Secondary water is boiled taking heat from the primary circuit. Before entering the turbine remaining water is separated from the steam so that the steam is dry.
  2. Turbine: The expanding steam drives a turbine, which connects to an electrical generator. The turbine is split into high and low pressure sections. To prevent condensation (Water droplets at high speed damage the turbine blades) steam is reheated between these sections. Reactors of the VVER-1000 type deliver 1 GW of electrical power.
  3. Condenser: The steam is cooled and allowed to condense, shedding waste heat into a cooling circuit.
  4. Deaerator: Removes gases from the coolant.
  5. Pump: The circulation pumps are each driven by their own small steam turbine.

To increase efficiency of the process, steam from the turbine is taken to reheat coolant before the deaerator and the steam generator. Water in this circuit is not supposed to be radioactive.

Tertiary cooling circuit and district heating[সম্পাদনা]

The tertiary cooling circuit is an open circuit diverting water from an outside reservoir such as a lake or river. Evaporative cooling towers, cooling basins or ponds transfer the waste heat from the generation circuit into the environment.

In most VVERs this heat can also be further used for residential and industrial heating. Operational examples of such systems are Bohunice NPP (Slovakia) supplying heat to the towns of Trnava[৮] (12 km away), Leopoldov (9.5 km away), and Hlohovec (13 km away), and Temelín NPP (Czech Republic) supplying heat to a nearby town 5 km away. Plans are made to supply heat from the Dukovany NPP to Brno (the second-largest city in the Czech Republic), covering two-thirds of its heat needs.[৯]

Safety barriers[সম্পাদনা]

The two VVER-440 units in Loviisa have containment buildings that fulfil Western safety standards.

A typical design feature of nuclear reactors is layered safety barriers preventing escape of radioactive material. VVER reactors have four layers:

  1. Fuel pellets: Radioactive elements are retained within the crystal structure of the fuel pellets.
  2. Fuel rods: The zircaloy tubes provide a further barrier resistant to heat and high pressure.
  3. Reactor Shell: A massive steel shell encases the whole fuel assembly hermetically.
  4. Reactor Building: A concrete containment building that encases the whole first circuit is strong enough to resist the pressure surge a breach in the first circuit would cause.

Compared to the RBMK reactors – the type involved in the Chernobyl disaster – the VVER uses an inherently safer design. It does not have the graphite-moderated RBMK's risk of a power surge transient or criticality accident. Also the RBMK power stations were constructed without containment structures on grounds of cost as well as the relative ease of re-fueling.[তথ্যসূত্র প্রয়োজন] (Fuel elements in an RBMK can be replaced while the reactor is running at its nominal output, allowing the continuous operation and plutonium extraction compared to pressurized water reactors like the VVER which need to be shut down to exchange fuel rod assemblies.)

Operational life of VVER 1000[সম্পাদনা]

Control room of a VVER-1000 in 2009, Kozloduy Unit 5

When first built the VVER design was intended to be operational for 35 years. A mid-life major overhaul including a complete replacement of critical parts such as fuel and control rod channels was thought necessary after that.[১০] Since RBMK reactors specified a major replacement programme at 35 years designers originally decided this needed to happen in the VVER type as well, although they are of more robust design than the RBMK type. Most of Russia's VVER plants are now reaching and passing the 35 year mark. More recent design studies have allowed for an extension of lifetime up to 50 years with replacement of equipment. New VVERs will be nameplated with the extended lifetime.

In 2010 the oldest VVER-1000, at Novovoronezh, was shut down for modernization to extend its operating life for an additional 20 years; the first to undergo such an operating life extension. The work includes the modernization of management, protection and emergency systems, and improvement of security and radiation safety systems.[১১]

VVER-1200[সম্পাদনা]

The VVER-1200 (or NPP-2006 or AES-2006)[৫] is an evolution of the VVER-1000 being offered for domestic and export use.[১২][১৩] The reactor design has been refined to optimize fuel efficiency. Specifications include a $1,200 per kW electric capital cost, 54 month planned construction time, and expected 60 year lifetime at 90% capacity factor. The VVER-1200 has a gross and net thermal efficiency of 37.5% and 34.8%. The VVER 1200 will produce 1,198 MWe of power.[১৪]

The first two units are being built at Leningrad Nuclear Power Plant II and Novovoronezh Nuclear Power Plant II. More reactors with a VVER-1200/491[১৫] like the Leningrad-II-design are planned (Kaliningrad and Nizhny Novgorod NPP) and under construction. The type VVER-1200/392M[১৬] as installed at the Novovoronezh NPP-II has also been selected for the Seversk, Zentral and South-Urals NPP. A standard version was developed as VVER-1200/513 and based on the VVER-TOI (VVER-1300/510) design.

In July 2012 a contract was agreed to build two AES-2006 in Belarus at Ostrovets for a cost of about $10 billion (Note that this price equates to $4,200 per kW capital cost as opposed to the $1,200 per kW initially cited above).[১৭] An AES-2006 is being bid for the Hanhikivi Nuclear Power Plant in Finland.[১৮] On 30 November 2017, concrete was poured for the nuclear island basemat for first of two V-392M units at Rooppur in Bangladesh.[১৯]

In August 2016 the first VVER-1200, Novovoronezh II-1, was connected to the grid[২০] and started commercial operation on 27 February 2017.[২১]

From 2015 to 2017 Egypt and Russia came to an agreement for the construction of four VVER-1200 units at El Dabaa Nuclear Power Plant.[২২]

Safety features[সম্পাদনা]

The nuclear part of the plant is housed in a single building acting as containment and missile shield. Besides the reactor and steam generators this includes an improved refueling machine, and the computerized reactor control systems. Likewise protected in the same building are the emergency systems, including an emergency core cooling system, emergency backup diesel power supply, and backup feed water supply,

A passive heat removal system had been added to the existing active systems in the AES-92 version of the VVER-1000 used for the Kudankulam Nuclear Power Plant in India. This has been retained for the newer VVER-1200 and future designs. The system is based on a cooling system and water tanks built on top of the containment dome.[২৩] The passive systems handle all safety functions for 24 hours, and core safety for 72 hours.[৫]

Other new safety systems include aircraft crash protection, hydrogen recombiners, and a core catcher to contain the molten reactor core in the event of a severe accident.[১৩][১৭][২১] The core catcher will be deployed in the El Dabaa Nuclear Power Plant build.[২৪]

ভবিষ্যত সংস্করণ[সম্পাদনা]

A number of designs for future versions of the VVER have been made:[২৫]

  • MIR-1200 (Modernised International Reactor) - designed in conjunction with Czech company ŠKODA JS[২৬] to satisfy European requirements[২৭]
  • VVER-1500 - VVER-1000 with dimensions increased to produce 1500 MWe gross power output, but design shelved in favour of the evolutionary VVER-1200[২৮]
  • VVER-TOI is aimed at development of typical optimized informative-advanced project of a new generation III+ Power Unit based on VVER technology, which meets a number of target-oriented parameters using modern information and management technologies.[২৯] The first VVER-TOI will be unit 1 of the Kursk II Nuclear Power Plant.[৩০]
  • VVER-1700 Supercritical water reactor version.
  • VVER-600 two cooling circuit version of the VVER-1200 designed for smaller markets, authorised to be built by 2030 at the Kola Nuclear Power Plant.[৩১][৩২]

বিদ্যুৎ উৎপাদন কেন্দ্র[সম্পাদনা]

List of operational, planned and VVER installations under construction
Power plant Country Reactors Notes
Akkuyu Turkey (4 × VVER-1200/513)
(AES-2006 with TOI-Standard)
Under construction.
Balakovo Russia 4 × VVER-1000/320
(2 × VVER-1000/320)
Units 5 and 6 construction suspended.
Belene Bulgaria (2 × VVER-1000/466B) Suspended.[৩৩]
Belarusian Belarus (2 × VVER-1200/491) Two VVER-1200 units under construction.
Bohunice Slovakia 2 × VVER-440/230
2 × VVER-440/213
Split in two plants, V-1 and V-2 with two reactors each. VVER-440/230 units at V-1 plant decommissioned in 2006 and 2008.
Bushehr Iran 1 × VVER-1000/446
(3 × VVER-1000/528)
A version of the V-320 adapted to the Bushehr site.[৩৪] Unit 2 and 3 planned, unit 4 cancelled.
Dukovany Czech Republic 4 × VVER 440/213 Upgraded to 502 MW in 2009-2012.
Greifswald Germany 4 × VVER-440/230
1 × VVER-440/213
(3 × VVER-440/213)
Decommissioned. Unit 6 finished, but never operated. Unit 7 and 8 construction suspended.
Kalinin Russia 2 × VVER-1000/338
2 × VVER-1000/320
Hanhikivi Finland 1 × VVER-1200/491 Construction start expected for 2017.[৩৫]
Khmelnitskiy Ukraine 2 × VVER-1000/320
(2 × VVER-1000/392B)
Units 3 and 4 construction suspended.
Kola Russia 2 × VVER-440/230
2 × VVER-440/213
Koodankulam India 2 × VVER-1000/412 (AES-92)
(2 × VVER-1000/412) (AES-92)
Unit 1 operational since 13 July 2013; Unit 2 operational since 10 July 2016.[৩৬] Units 3 and 4 under construction.
Kozloduy Bulgaria 4 × VVER-440/230
2 × VVER-1000
Older VVER-440/230 units decommissioned 2004-2007.
Kursk II Russia 1 × VVER-TOI First VVER-TOI.[৩০]
Leningrad II Russia (2 × VVER-1200/491) (AES-2006) The units are the prototypes of the VVER-1200/491 (AES-2006) and under construction.
Loviisa Finland 2 × VVER-440/213 Western control systems, totally different containment structures. Later modified for a 496 MW output.
Metsamor Armenia 2 × VVER-440/270 One reactor was shut down in 1989.
Mochovce Slovakia 2 × VVER-440/213
(2 × VVER-440/213)
Units 3 and 4 under construction, planned to be operational between 2018 and 2019.
Novovoronezh Russia 1 x VVER-210 (V-1)
1 x VVER-365 (V-3M)
2 × VVER-440/179
1 × VVER-1000/187
All units are prototypes. Unit 1 and 2 shutdown. Unit 3 modernised in 2002.[৩৭]
Novovoronezh II Russia 1 × VVER-1200/392M (AES-2006)
(1 × VVER-1200/392M) (AES-2006)
The units are the prototypes of the VVER-1200/392M (AES-2006). Unit 2 is under construction.
Paks Hungary 4 × VVER-440/213
(2 × VVER-1200/517)
Two VVER-1200 units planned
Rheinsberg Germany 1 × VVER-70 (V-2) Unit decommissioned
Rivne Ukraine 2 × VVER-440/213
2 × VVER-1000/320
(2 × VVER-1000/320)
Units 5 and 6 planning suspended.
South Ukraine Ukraine 1 × VVER-1000/302
1 × VVER-1000/338
1 × VVER-1000/320
(1 × VVER-1000/320)
Unit 4 construction suspended.
Stendal Germany (4 × VVER-1000/320) All 4 units construction cancelled after Germany reunification.
Temelin Czech Republic 2 × VVER-1000/320
Tianwan China 2 × VVER-1000/428 (AES-91)
(2 × VVER-1000/428M) (AES-91)
(? × VVER-1000/428M)
Units 3 and 4 under construction, some more units under consideration.
Rostov Russia 3 × VVER-1000/320
(1 × VVER-1000/320)
Unit 4 is under construction and planned to be operational in 2017.
Rooppur Bangladesh 2 × VVER- 1200/523 Unit 1 Under construction

Unit 2 Planned

Zaporizhzhia Ukraine 6 × VVER-1000/320 Largest nuclear power plant in Europe.
See the Wikipedia pages for each facility for sources.

Russia recently installed two nuclear reactors in China at the Tianwan Nuclear Power Plant, and an extension consisting of a further two reactors was just approved. This is the first time the two countries have co-operated on a nuclear power project. The reactors are the VVER 1000 type, which Russia has improved incrementally while retaining the basic design. These VVER 1000 reactors are housed in a confinement shell capable of being hit by an aircraft weighing 20 tonnes and suffering no expected damage. Other important safety features include an emergency core cooling system and core confinement system. Russia delivered initial fuel loads for the Tianwan reactors. China planned to begin indigenous fuel fabrication for the Tianwan plant in 2010, using technology transferred from Russian nuclear fuel producer TVEL.[৩৮]

The Tianwan Nuclear Power Plant uses many third party parts. While the reactor and turbo-generators are of Russian design, the control room was designed and built by an international consortium. In this way the plant was brought to meet widely recognised safety standards; safety systems were already mostly in place but the previous monitoring of these systems did not meet international safety standards. The new VVER 1000 plant built in China has 94% of its systems automated, meaning the plant can control itself under most situations. Refueling procedures require little human intervention. Five operators are still needed in the control room.

In May 2010 Russia secured an agreement with the Turkish government to build a power plant with four VVER-1200 reactors at Akkuyu, Turkey.[৩৯][৪০] However, due to the accident experienced in Fukushima, anti-nuclear environmentalist groups heavily protested the proposed reactor at Akkuyu.[তথ্যসূত্র প্রয়োজন]

On 11 October 2011 an agreement was signed to build Belarus’ first nuclear power plant at Astravyets, using two VVER-1200/491 (AES-2006) reactors with active and passive safety systems. In July 2016, the reactor vessel for unit 1 has hit the ground during transportation, and though no damage was sustained it was decided to be replaced to allay public fears, delaying the project by a year. Unit 1 is now planned to commence operation in 2019.[৪১]

In October 2013 the VVER-1000 (AES-92) design was selected by the Jordan Atomic Energy Commission in a competitive tender for Jordan's first twin reactor nuclear power station.[৪২]

In November 2015 and March 2017 Egypt signed preliminary agreements with Russian nuclear company Rosatom for a first VVER-1200 unit at El Dabaa to start operations in 2024. Discussions continue for final approval.[৪৩][৪৪][৪৫]

আরো দেখুন[সম্পাদনা]

তথ্যসূত্র[সম্পাদনা]

  1. "Kudankulam nuclear plant starts generating power, connected to southern grid"The Times Of India 
  2. "Historical notes"। OKB Gidropress। সংগ্রহের তারিখ ২০ সেপ্টেম্বর ২০১১ 
  3. "WWER-type reactor plants"। OKB Gidropress। সংগ্রহের তারিখ ২৫ এপ্রিল ২০১৩ 
  4. Prof. H. Böck। "WWER/ VVER (Soviet designed Pressurized Water Reactors)" (PDF)Vienna University of Technology। Austria Atominstitute। সংগ্রহের তারিখ ২৮ সেপ্টেম্বর ২০১১ 
  5. Fil, Nikolay (২৬–২৮ জুলাই ২০১১)। "Status and perspectives of VVER Status and perspectives of VVER nuclear power plants nuclear power plants" (PDF)OKB Gidropress। IAEA। সংগ্রহের তারিখ ২৮ সেপ্টেম্বর ২০১১ 
  6. "Rosatom Intends to Certify VVER in Great Britain and USA"। Novostienergetiki.re। ৬ জুন ২০১২। সংগ্রহের তারিখ ২১ জুন ২০১২ 
  7. Svetlana Burmistrova (১৩ আগস্ট ২০১৩)। "Russia's Rosatom eyes nuclear contracts in Britain"। Reuters। সংগ্রহের তারিখ ১৪ আগস্ট ২০১৩ 
  8. Nuclear power plant Jaslovské Bohunice as an important factor for savings on heat
  9. Nuclear Power in Czech Republic
  10. Martti Antila, Tuukka Lalitinen. "Recent Core Design and Operating Experience in Loviisa NPP". IAEA. Retrieved on 20 September 2011.
  11. "Modernization works begin at Russia's oldest VVER-1000"। Nuclear Engineering International। ৩০ সেপ্টেম্বর ২০১০। ১৩ জুন ২০১১ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ১০ অক্টোবর ২০১০ 
  12. "AES-2006 (VVER-1200)"। Rosatom। ২৬ আগস্ট ২০১১ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২২ সেপ্টেম্বর ২০১১ 
  13. Asmolov, V. G. (১০ সেপ্টেম্বর ২০০৯)। "Development of the NPP Designs Based on the VVER Technology" (PDF)। Rosatom। সংগ্রহের তারিখ ৯ আগস্ট ২০১২ 
  14. "Russian nuclear engineers invite foreign suppliers to plant projects"। World Nuclear News। ৭ ডিসেম্বর ২০১৫। সংগ্রহের তারিখ ২৬ মার্চ ২০১৭ 
  15. Status report 108 - VVER-1200 (V-491) (PDF) (প্রতিবেদন)। Rosatom। ২০১৪। সংগ্রহের তারিখ ৩১ ডিসেম্বর ২০১৬ 
  16. "WWER-1000 reactor plant (V-392)"। OKB Gidropress। সংগ্রহের তারিখ ২২ সেপ্টেম্বর ২০১১ 
  17. "$10 billion construction contract signed for two AES 2006 Russian reactors in Belarus"। I-Nuclear। ১৯ জুলাই ২০১২। সংগ্রহের তারিখ ৮ আগস্ট ২০১২ 
  18. "Rosatom buys into Fennovoima"। World Nuclear News। ২৮ মার্চ ২০১৪। সংগ্রহের তারিখ ২৯ মার্চ ২০১৪ 
  19. "First Concrete Poured For Unit 1 At Bangladesh's Rooppur"www.nucnet.org। NucNet a.s.b.l Brussels। ৩০ নভেম্বর ২০১৭। সংগ্রহের তারিখ ৩০ নভেম্বর ২০১৭ 
  20. "Russia connects Novovoronezh 6 reactor to grid"। World Nuclear News। ৫ আগস্ট ২০১৬। সংগ্রহের তারিখ ১৭ সেপ্টেম্বর ২০১৬ 
  21. "First VVER-1200 reactor enters commercial operation"। World Nuclear News। ২ মার্চ ২০১৭। সংগ্রহের তারিখ ৩ মার্চ ২০১৭ 
  22. "'Notice to proceed' contracts signed for El Dabaa"। World Nuclear News। ১১ ডিসেম্বর ২০১৭। সংগ্রহের তারিখ ১২ ডিসেম্বর ২০১৭ 
  23. V.G. Asmolov (২৬ আগস্ট ২০১১)। "Passive safety in VVERs"JSC Rosenergoatom। Nuclear Engineering International। ১৯ মার্চ ২০১২ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ৬ সেপ্টেম্বর ২০১১ 
  24. "Melt traps ordered for Egyptian nuclear plant"। Nuclear Engineering International। ৬ ফেব্রুয়ারি ২০১৮। সংগ্রহের তারিখ ৯ ফেব্রুয়ারি ২০১৮ 
  25. "Advanced Nuclear Power Reactors"। World Nuclear Association। সেপ্টেম্বর ২০১১। সংগ্রহের তারিখ ২২ সেপ্টেম্বর ২০১১ 
  26. "MIR.1200"। ŠKODA JS। ১ এপ্রিল ২০১২ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৩ সেপ্টেম্বর ২০১১ 
  27. "MIR-1200"। OKB Gidropress। সংগ্রহের তারিখ ২২ সেপ্টেম্বর ২০১১ 
  28. "WWER-1500 reactor plant"। OKB Gidropress। সংগ্রহের তারিখ ২২ সেপ্টেম্বর ২০১১ 
  29. "Создание типового проекта оптимизированного и информатизированного энергоблока технологии ВВЭР (ВВЭР-ТОИ)"। Rosatom Nuclear Energy State Corporation। ২৫ এপ্রিল ২০১২ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৪ এপ্রিল ২০১৮ 
  30. "AEM Technology sees milestone with first VVER-TOI"। World Nuclear News। ১৭ এপ্রিল ২০১৮। সংগ্রহের তারিখ ১৮ এপ্রিল ২০১৮ 
  31. Status report 102 - VVE R-600 (V-498) (VVER-600 (V-498)) (PDF) (প্রতিবেদন)। IAEA। ২২ জুলাই ২০১১। সংগ্রহের তারিখ ১৭ সেপ্টেম্বর ২০১৬ 
  32. "Russia to build 11 new nuclear reactors by 2030"। World Nuclear News। ১০ আগস্ট ২০১৬। সংগ্রহের তারিখ ১৭ সেপ্টেম্বর ২০১৬ 
  33. (27 Feb 2013). "Bulgarian Parliament Votes to Abandon Belene Nuclear Plant". worldnuclearreport.org. Retrieved on 22 Sep 2014.
  34. Anton Khlopkov and Anna Lutkova (21 August 2010). "The Bushehr NPP: Why did it take so long". Center for Energy and Security Studies. Retrieved on 1 March 2011.
  35. http://www.world-nuclear.org/info/Country-Profiles/Countries-A-F/Finland/
  36. Kudankulam Nuclear Power Plant attains criticality
  37. "New life of Novovoronezh 3"। Nuclear Engineering International। ৩ জুন ২০০২। ১৪ জুলাই ২০১১ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ৯ মার্চ ২০১১ 
  38. Tianwan fuel fabrication moves to China; March 2010
  39. "Arrangements Completed for Nuclear Power Plant"Turkish Weekly। ১৫ আগস্ট ২০১১। ৭ এপ্রিল ২০১৪ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ ২৪ এপ্রিল ২০১৮ 
  40. "Генплан размещения первой турецкой АЭС разработают осенью 2011 года (Master plan of placing the first Turkish nuclear power plant will develop a fall 2011)"Ria Novosti। ২২ আগস্ট ২০১১।  Source for "четырех энергоблоков с реакторами ВВЭР-1200 по российскому" or "four VVER-1200 reactors"
  41. https://news.tut.by/economics/520220.html
  42. "Jordan selects its nuclear technology"। World Nuclear News। ২৯ অক্টোবর ২০১৩। সংগ্রহের তারিখ ২ নভেম্বর ২০১৩ 
  43. Ezzidin, Toqa (২৯ নভেম্বর ২০১৫)। "El-Dabaa nuclear station to generate electricity in 2024: Prime Minister"Daily News। Egypt। সংগ্রহের তারিখ ২২ মার্চ ২০১৭ 
  44. "Egypt and Russia agree on two contracts for El Dabaa NPP"। Nuclear Engineering International। ২০ মার্চ ২০১৭। সংগ্রহের তারিখ ২২ মার্চ ২০১৭ 
  45. Farag, Mohamed (১৪ মার্চ ২০১৭)। "Russia launches operations of nuclear unit similar to Dabaa units"Daily News। Egypt। সংগ্রহের তারিখ ২৬ মার্চ ২০১৭ 

External links[সম্পাদনা]