ব্যবহারকারী:Ahammad Ullah Bappy/পানির বাষ্পীয় চাপ

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে

পানির বাষ্পীয় চাপ হচেছ এমন চাপ যেখানে‌ জলীয়বাষ্প তাপগতীয় সাম্যাবস্থার ঘণীভূত অবস্থায় থাকে। উচ্চ তাপমাত্রায় পানি ঘনীভূত হয়ে থাকে। পানির বাষ্পীয় চাপ হলো কঠিন অথবা তরল পানির সাম্যাবস্থার যে কোনো গ্যাস মিশ্রনের জলীয়বাস্পের আংশিক চাপ। অন্যান্য পদার্থের জন্য, পানির বাষ্পীয় চাপ হলো তাপমাত্রার ফাংশন এবং ক্লসিয়াস-ক্ল্যাপেরন সম্পর্কের মাধ্যমে নির্ণয় করা হয়।

টেমপ্লেট:পানির বাষ্পীয় চাপ

Approximation formulas[সম্পাদনা]

There are many published approximations for calculating saturated vapour pressure over water and over ice. Some of these are (in approximate order of increasing accuracy):

where P is the vapour pressure in mmHg and T is the temperature in kelvins.
where the temperature T is in degrees Celsius (°C) and the vapour pressure P is in mmHg. The constants are given as
A B C Tmin, °C Tmax, °C
8.07131 1730.63 233.426 1 99
8.14019 1810.94 244.485 100 374

where temperature T is in °C and vapour pressure P is in kilopascals (kPa)

where temperature T is in °C and  P is in kPa

where T is in °C and P is in kPa.

Accuracy of different formulations[সম্পাদনা]

Here is a comparison of the accuracies of these different explicit formulations, showing saturation vapour pressures for liquid water in kPa, calculated at six temperatures with their percentage error from the table values of Lide (2005):

T (°C) P (Lide Table) P (Eq 1) P (Antoine) P (Magnus) P (Tetens) P (Buck) P (Goff-Gratch)
0 0.6113 0.6593 (+7.85%) 0.6056 (-0.93%) 0.6109 (-0.06%) 0.6108 (-0.09%) 0.6112 (-0.01%) 0.6089 (-0.40%)
20 2.3388 2.3755 (+1.57%) 2.3296 (-0.39%) 2.3334 (-0.23%) 2.3382 (+0.05%) 2.3383 (-0.02%) 2.3355 (-0.14%)
35 5.6267 5.5696 (-1.01%) 5.6090 (-0.31%) 5.6176 (-0.16%) 5.6225 (+0.04%) 5.6268 (+0.00%) 5.6221 (-0.08%)
50 12.344 12.065 (-2.26%) 12.306 (-0.31%) 12.361 (+0.13%) 12.336 (+0.08%) 12.349 (+0.04%) 12.338 (-0.05%)
75 38.563 37.738 (-2.14%) 38.463 (-0.26%) 39.000 (+1.13%) 38.646 (+0.40%) 38.595 (+0.08%) 38.555 (-0.02%)
100 101.32 101.31 (-0.01%) 101.34 (+0.02%) 104.077 (+2.72%) 102.21 (+1.10%) 101.31 (-0.01%) 101.32 (0.00%)

A more detailed discussion of accuracy and considerations of the inaccuracy in temperature measurements is presented in Alduchov and Eskridge (1996). The analysis here shows the simple unattributed formula and the Antoine equation are reasonably accurate at 100 °C, but quite poor for lower temperatures above freezing. Tetens is much more accurate over the range from 0 to 50 °C and very competitive at 75 °C, but Antoine's is superior at 75 °C and above. The unattributed formula must have zero error at around 26 °C, but is of very poor accuracy outside a very narrow range. Tetens' equations are generally much more accurate and arguably simpler for use at everyday temperatures (e.g., in meteorology). As expected, Buck's equation for T > 0 °C is significantly more accurate than Tetens, and its superiority increases markedly above 50 °C, though it is more complicated to use. The Buck equation is even superior to the more complex Goff-Gratch equation over the range needed for practical meteorology.

Numerical approximations[সম্পাদনা]

For serious computation, Lowe (1977)[৩] developed two pairs of equations for temperatures above and below freezing, with different levels of accuracy. They are all very accurate (compared to Clausius-Clapeyron and the Goff-Gratch) but use nested polynomials for very efficient computation. However, there are more recent reviews of possibly superior formulations, notably Wexler (1976, 1977),[৪][৫] reported by Flatau et al. (1992).[৬]

Graphical pressure dependency on temperature[সম্পাদনা]

Vapour pressure diagrams of water; data taken from Dortmund Data Bank. Graphics shows triple point, critical point and boiling point of water.

See also[সম্পাদনা]

References[সম্পাদনা]

  1. Alduchov, O.A.; Eskridge, R.E. (১৯৯৬)। "Improved Magnus form approximation of saturation vapor pressure"Journal of Applied Meteorology35 (4): 601–9। ডিওআই:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2বিবকোড:1996JApMe..35..601A 
  2. Goff, J.A., and Gratch, S. 1946. Low-pressure properties of water from −160 to 212 °F. In Transactions of the American Society of Heating and Ventilating Engineers, pp 95–122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
  3. Lowe, P.R. (১৯৭৭)। "An approximating polynomial for the computation of saturation vapor pressure"। Journal of Applied Meteorology16 (1): 100–4। ডিওআই:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2অবাধে প্রবেশযোগ্যবিবকোড:1977JApMe..16..100L 
  4. Wexler, A. (১৯৭৬)। "Vapor pressure formulation for water in range 0 to 100°C. A revision"। Journal of Research of the National Bureau of Standards Section A80A (5–6): 775–785। ডিওআই:10.6028/jres.080a.071অবাধে প্রবেশযোগ্য 
  5. Wexler, A. (১৯৭৭)। "Vapor pressure formulation for ice"। Journal of Research of the National Bureau of Standards Section A81A (1): 5–20। ডিওআই:10.6028/jres.081a.003অবাধে প্রবেশযোগ্য 
  6. Flatau, P.J.; Walko, R.L.; Cotton, W.R. (১৯৯২)। "Polynomial fits to saturation vapor pressure"। Journal of Applied Meteorology31 (12): 1507–13। ডিওআই:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2অবাধে প্রবেশযোগ্যবিবকোড:1992JApMe..31.1507F 

Further reading[সম্পাদনা]

External links[সম্পাদনা]

  • Vömel, Holger (২০১৬)। "Saturation vapor pressure formulations"। Boulder CO: Earth Observing Laboratory, National Center for Atmospheric Research। জুন ২৩, ২০১৭ তারিখে মূল থেকে আর্কাইভ করা। 
  • "Vapor Pressure Calculator"। National Weather Service, National Oceanic and Atmospheric Administration। 

টেমপ্লেট:HVAC