প্রজন্ম ১
|
ফার্মিয়ন (বাম দিকস্থ)
|
প্রতীক
|
বৈদ্যুতিক আধান
|
Weak isospin
|
Weak hypercharge
|
কালার চার্জ [lhf ১]
|
ভর[lhf ২]
|
ইলেকট্রন
|
|
|
|
|
|
511 keV
|
পজিট্রন
|
|
|
|
|
|
511 keV
|
Electron neutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Electron antineutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Up quark
|
|
|
|
|
|
~ 3 MeV[lhf ৫]
|
Up antiquark
|
|
|
|
|
|
~ 3 MeV[lhf ৫]
|
Down quark
|
|
|
|
|
|
~ 6 MeV[lhf ৫]
|
Down antiquark
|
|
|
|
|
|
~ 6 MeV[lhf ৫]
|
|
প্রজন্ম ২
|
ফার্মিয়ন (বাম দিকস্থ)
|
প্রতীক
|
বৈদ্যুতিক আধান
|
Weak isospin
|
Weak hypercharge
|
কালার চার্জ [lhf ১]
|
ভর [lhf ২]
|
মিউওন
|
|
|
|
|
|
106 MeV
|
Antimuon
|
|
|
|
|
|
106 MeV
|
Muon neutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Muon antineutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Charm quark
|
|
|
|
|
|
~ 1.337 GeV
|
Charm antiquark
|
|
|
|
|
|
~ 1.3 GeV
|
Strange quark
|
|
|
|
|
|
~ 100 MeV
|
Strange antiquark
|
|
|
|
|
|
~ 100 MeV
|
|
প্রজন্ম ৩
|
ফার্মিয়ন (বাম দিকস্থ)
|
প্রতীক
|
বৈদ্যুতিক আধান
|
Weak isospin
|
Weak hypercharge
|
কালার চার্জ[lhf ১]
|
ভর[lhf ২]
|
Tau
|
|
|
|
|
|
1.78 GeV
|
Antitau
|
|
|
|
|
|
1.78 GeV
|
Tau neutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Tau antineutrino
|
|
|
|
|
|
< 0.28 eV[lhf ৩][lhf ৪]
|
Top quark
|
|
|
|
|
|
171 GeV
|
Top antiquark
|
|
|
|
|
|
171 GeV
|
Bottom quark
|
|
|
|
|
|
~ 4.2 GeV
|
Bottom antiquark
|
|
|
|
|
|
~ 4.2 GeV
|
- ↑ ক খ গ These are not ordinary abelian charges, which can be added together, but are labels of group representations of Lie groups.
- ↑ ক খ গ Mass is really a coupling between a left-handed fermion and a right-handed fermion. For example, the mass of an electron is really a coupling between a left-handed electron and a right-handed electron, which is the antiparticle of a left-handed positron. Also neutrinos show large mixings in their mass coupling, so it's not accurate to talk about neutrino masses in the flavor basis or to suggest a left-handed electron antineutrino.
- ↑ ক খ গ ঘ ঙ চ The Standard Model assumes that neutrinos are massless. However, several contemporary experiments prove that neutrinos oscillate between their flavour states, which could not happen if all were massless. It is straightforward to extend the model to fit these data but there are many possibilities, so the mass eigenstates are still open. See neutrino mass.
- ↑ ক খ গ ঘ ঙ চ W.-M. Yao et al. (Particle Data Group) (২০০৬)। "Review of Particle Physics: Neutrino mass, mixing, and flavor change" (পিডিএফ)। Journal of Physics G। 33: 1। arXiv:astro-ph/0601168
। ডিওআই:10.1088/0954-3899/33/1/001। বিবকোড:2006JPhG...33....1Y।
- ↑ ক খ গ ঘ The masses of baryons and hadrons and various cross-sections are the experimentally measured quantities. Since quarks can't be isolated because of QCD confinement, the quantity here is supposed to be the mass of the quark at the renormalization scale of the QCD scale.
|