প্যাস্কেলের ত্রিভূজ

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
পরিভ্রমণে ঝাঁপ দিন অনুসন্ধানে ঝাঁপ দিন
প্যাস্কেলের ত্রিভূজে, উপরোক্ত সারির দুটি সংখ্যার যোগফলে অনুগামী সারির সংখ্যাগুলো নির্ণয় করা হয় এবং প্রথম পদ শূণ্য, পরের পদটি এক; এবং শেষ পদ শূণ্য ও তার আগের পদটি এক হয়।

গণিতে, প্যাস্কেলের ত্রিভূজ-এর গুরুত্ব অপসীম। দ্বিপদী উপপাদ্য, ২ এর ঘাত যোগফলের অনুক্রম সহ বিভিন্ন গাণিতিক ধারার অভিব্যক্তি প্রকাশে সহায়তা করে। ফ্রান্স-এর গণিতবিদ, ব্লেইজ প্যাস্কেল-এর নাম অনুসারে এই ধারার নামকরন করা হয়েছে।

প্রথমে, ধারাটির প্রথম লাইন ০-১-০ দিয়ে শুরু হয়। এর ঠিক নিচে পরের লাইটিতে, ০ দিয়ে ধারাটি শুরু হয়, যার পরবর্তী সংখ্যাটি প্রথম দুই পদের যোগফল, ০+১=১, এবং পরের পদটি শেষের দুই পদের যোগফল, ১+০=১; এবং শেষ পদটি ০ হয়। ফলে দ্বিতীয় লাইনটির হয়, ০-১-১-০। তৃতীয় লাইনের ক্ষেত্রে, প্রথম পদটি, দ্বিতীয় লাইনের প্রথম ও দ্বিতীয় পদের যোগফল ০+১=১, দ্বিতীয় পদটি দ্বিতীয় ও তৃতীয় পদের যোগফল ১+১=২, তৃতীয় পদটি তৃতীয় ও চতুর্থ পদের যোগফল ১+০=১; এবং শেষ পদটি ০ হয়, এবং লাইনটি হয় ০-১-২-১-০। এই ক্রম অনুসারে পরবর্তী লাইন গুলো চলতে থাকে।

তথ্যসূত্ৰ[সম্পাদনা]

বাহ্যিক সংযোগ[সম্পাদনা]