গ্যালোয়ার তত্ত্ব

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
সরাসরি যাও: পরিভ্রমণ, অনুসন্ধান
এভারিস্তে গ্যালোয়া (১৮১১-১৮৩২)

বিমূর্ত বীজগণিতে গ্যালোয়া তত্ত্ব হচ্ছে এভারিস্তে গ্যালোয়ার নামে নামাঙ্কিত একটি তত্ত্ব যা ফিল্ড তত্ত্বগ্রুপ তত্ত্বর মাঝে সম্পর্ক প্রতিষ্ঠা করেছে। এই তত্ত্ব ব্যবহার করে ফিল্ড তত্ত্বের অনেক সমস্যাকে গ্রুপ তত্ত্বের সমস্যায় রূপান্তর করা যায়, যেগুলো খানিকটা সরল এবং অধিকতর বোধগম্য।

গ্যালোয়া বিন্যাস গ্রুপ ব্যবহার করে বহুপদীর বীজগুলো কীভাবে একে অন্যের সাথে সম্পর্কযুক্ত তা দেখাতে গিয়ে এই তত্ত্বের অবতারণা করেন। তবে গ্যালোয়া তত্ত্বের আধুনিক প্রকাশভঙ্গি তৈরি করেছেন রিচার্ড ডেডেকিন্ড, ক্রোনেচকার, এমিল আর্টিন প্রমুখ ব্যক্তিগণ।

কিছু চিরায়ত সমস্যায় ব্যবহার[সম্পাদনা]

গ্যালোয়া তত্ত্বের জন্ম হয়েছিল নিচের একটি প্রশ্নের দ্বারা অনুপ্রাণিত হয়ে: (যার উত্তরকে আমরা জানি আবেল-রুফিনি উপপাদ্য বলে)

কেন পঞ্চঘাতী বা উচ্চতর বহুপদীর বীজ বের করার কোন সূত্র নেই যেটাতে শুধু বহুপদীর সহগগুলোর মান জানা থাকলেই বীজগাণিতিক প্রক্রিয়ার সাহায্যে বীজ বের হয়ে আসবে? কেন শুধু পাঁচের কম ঘাত হলেই এমন সূত্র বানানো সম্ভব?

গ্যালোয়া তত্ত্ব শুধু এই প্রশ্নের চমৎকার উত্তরই দেয় না, বরঞ্চ এটি এও ব্যাখ্যা করে কেন পাঁচের কম ঘাতের জন্য এমন সূত্র থাকে আর কেনই বা সূত্রগুলো এমন রূপ নেয়। গ্যালয়া তত্ত্ব এমনকি এটাও বলে কখন একটি উচ্চ ঘাতের সমীকরণের সমাধান বের করা সম্ভব।

ইতিহাস[সম্পাদনা]

আরও দেখুন: বিমূর্ত বীজগণিত

আরও দেখুন[সম্পাদনা]

তথ্যসূত্র[সম্পাদনা]

বহিঃসংযোগ[সম্পাদনা]

কিছু টিউটোরিয়াল:

অনলাইনে বই পাওয়া যাবে এখানে: