দ্বিতীয় ভাস্কর

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
প্রথম ভাস্কর নিবন্ধের সাথে বিভ্রান্ত হবেন না।

ভাস্কর[১] (এছাড়াও ভাস্করাচার্য হিসেবে পরিচিত ("Bhāskara the teacher"), এবং দ্বিতীয় ভাস্কর-এর সাথে বিভ্রান্তি এড়ানোর জন্য প্রথম ভাস্কর) (১১১৪–১১৮৫), ছিলেন একজন ভারতীয় গনিতবিদ এবং জ্যোতির্বিজ্ঞানী। তিনি ভারতের বিজাপুরে (বর্তমানে কর্ণাটক) জন্ম গ্রহণ করেন।[২]

জীবনী[সম্পাদনা]

ভাস্কর তাঁর জন্ম এবং প্রধান কাজের তারিখ সম্পর্কে আর্য মিটারের একটি পঙ্‌ক্তিতে বর্ণনা করেন:[৩]

rasa-guṇa-pūrṇa-mahīsama
śaka-nṛpa samaye 'bhavat mamotpattiḥ /
rasa-guṇa-varṣeṇa mayā
siddhānta-śiromaṇī racitaḥ //

এই থেকে ধারণা প্রকাশ পায় যে তিনি শক যুগের ১০৩৬ সালে (১১১৪ খ্রিষ্টাব্দ) জন্মগ্রহণ করেন। তিনি ৩৬ বছর বয়সে সিদ্ধান্ত শিরোমণি রচনা করেন।[৩] তিনি ৬৯ বছর বয়সে (১১৮৩ সালে) Karana-kutūhala নামক অন্য আরেকটি রচনা তৈরি করেন।[৩] তাঁর কাজসমূহে ব্রহ্মগুপ্ত, শ্রীধর, মহাবীর, পদ্মনাভ এবং অন্যান্য পূর্বসুরীদের প্রভাব দেখা যায়।[৩]

অনেকে তাকে ভাস্কর-I(৬০০-৬৮০ খ্রিস্টাব্দ)এর সাথে মিলিয়ে ফেলেন।এরা দুজন ভিন্ন মানুষ। তাদের জন্মও হয় দুটি ভিন্ন সময়ে। ভাস্কর-১ ছিলেন আর্যভট্টের প্রিয় ছাত্র।

ভাস্কর কর্ণাটকের বিজ্জবিড় শহরে বসবাস করতেন। এ শহরের নাম পরিবর্তন করে বিজাপুর রাখা হয় । শহরটি পশ্চিমঘাটে সহ্য পর্বতের কাছাকাছি। তাঁর বাবা দৈবজ্ঞচূড়ামণি মহেশ্বর উপাধ্যায়। এসব তথ্য জানা যায় একটা তামার ফলক থেকে। ফলকটি নাসিক থেকে সত্তর মাইল দূরে চালিস গাঁ নামে এক জায়গায় ভাউদাজি আবিস্কার করেন।ভস্করের পিতাও ছিলেন একজন প্রাজ্ঞ ব্যক্তি। [৪]

অবদান[সম্পাদনা]

সিদ্ধান্তশিরমনি[সম্পাদনা]

ভাস্করের সর্বশ্রেষ্ঠ রচনা 'সিদ্ধান্ত-শিরমণি'(১১৫০)।[৫] ছত্রিশ বছর বয়সে তিনি এই বই লিখেন। 'করণ কুহুতল' ও 'সর্বতোভদ্র' বই দুটিও তাঁর রচনা। 'সিদ্ধান্ত-শিরমণি' বইটিতে রয়েছে চারটি খণ্ড - লীলাবতী, বীজগণিত, গ্রহ গণিতাধ্যায় ও গোলধ্যায়।

লীলাবতী[সম্পাদনা]

সিদ্ধান্ত শিরমনি বইয়ের একটি খণ্ডের নাম লীলাবতী। লীলাবতী খণ্ডটি নিয়ে একাধিক কাহিনী প্রচলিত রয়েছে। লীলাবতী ও বীজগণিত হচ্ছে গণিতের বই। লীলাবতী সম্ভবত ভাস্করের কন্যা ছিলেন।ধারনা করা হয় খুব অল্প বয়সে বিধবা হয়ে তিনি বাবার ঘরে চলে আসেন।ভাস্কর তাকে ধীরে ধীরে পাটিগণিত শেখান। তখনই তিনি বইটি লিখেন। মেয়ের নামে নাম দেন। আর এক মতে, ভাস্করের কোন মেয়ে ছিল না। তাঁর স্ত্রীর নাম ছিল লীলাবতী। তাঁর স্মরণে তিনি বইটির নাম দেন। তবে বইয়ের নানা জায়গায় এমন কিছু সম্বোধন আছে যে অনেকে ভাবছেন লীলাবতী এক কাল্পনিক নাম। কোথাও বলেছেন- 'অয়ি বালে লীলাবতী', কোথাও সখে, কান্তে, বৎসে বলে সম্বোধন করেছেন। লীলাবতী লেখার ধরণটা কথপকথন। কথা বলতে বলতে অঙ্ক শেখাচ্ছেন। লীলাবতী শব্দটির অর্থ গুণসম্পন্না।

বীজগণিত[সম্পাদনা]

'লীলাবতী'-তে ব্রহ্মগুপ্ত, শ্রীধর ও পদ্মনাভের নাম উল্লেখ আছে। শ্রীধর দ্বিঘাত সমীকরণের সমাধানের যে উপায় বার করেছিলেন । পদ্মনাভের বীজগনিতের কথা আমরা প্রথম ভাস্করের রচনা থেকে জানতে পারি।

  • ভাস্কর যখন বীজগনিতের আলোচনা করেছিলেন কোন রাশিকে শূন্য দিয়ে ভাগ দিলে কী হয় বলেছেন।
  • তিনিই বলেছেন, ঋণাত্মক রাশিকে ঋণাত্মক রাশি দ্বারা গুন করলে ফলটি হবে ধনাত্মক। কিন্তু ঋণাত্মক রাশিকে ধনাত্মক রাশি দ্বারা গুন করলে ফল হবে ঋণাত্মক।
  • এখন অজ্ঞাত রাশি বলতে আমরা 'X' বসানো হয়। ভাস্কর মনেকরতেন দেবনাগরি কোন বর্ণ দ্বারা অজ্ঞাত রাশি চিহ্নিত হোক।
  • নানারকমের দ্বিঘাত সমীকরণকে পাল্টে নিয়ে একটা সাধারণ আকার দিয়ে এরপর সমাধানের উপায় বলেছিলেন তিনি। কিছু বিশেষ ধরনের ত্রিঘাত সমীকরণেরও সমাধান করেন তিনি।[৬]

জ্যামিতি ও পরিমিতি[সম্পাদনা]

জ্যামিতিতে ভাস্করের অবদান উল্লেখযোগ্য।

  • সমকোণী ত্রিভুজ আর সুষম বহুভুজ নিয়ে তিনি 'পাই'-এর মান বের করেছিলেন ৩.১৪১৬৬৬।
  • কোন যন্ত্র ছাড়াই, ৩৮৪ বাহুর এক বহুভুজের কল্পনা করেছিলেন ভাস্কর!
  • তিনি গোলকের তলের পরিমাণ ও আয়তন নির্ণয় করেছিলেন। করতে গিয়ে গোলকটিকে ছোট ছোট করে ভাগ করে নিয়েছেন ও পরে যোগ করেছেন। বিষয়টা নিউটনের আবিষ্কৃত ইন্টিগ্র্যাল ক্যালকুলাসের মতোই অনেকটা।[৭] তবে নিউটন এসেছিলেন আরও পাঁচশো বছর পর।[৮]

জ্যোতির্বিজ্ঞান[সম্পাদনা]

  • ভাস্কর গ্রহের গতি পরিমাপ করেছিলেন ডিফারেন্সিয়াল ক্যালকুলাসের মূলনীতিকে ব্যবহার করে।
  • গ্রহের তাৎক্ষণিক গতিও মেপেছিলেন।
  • সময়কে সূক্ষ্মাতিসূক্ষ্ম পরিমাণে ভাগ করেছিলেন।
  • তিনি Rolle's theorem এর একটি আদি রুপ ব্যবহার করেন-

যদি f(a)=f(b)=0 তাহলে, f’(x)=0 যখন a is less than x SPamp x is less than b

একে ডিফারেন্সিয়াল ক্যালকুলাস বলা হয়!

  • এক সেকেন্ড সময়কে তিনি ৩৪০০০ ভাগে ভাগ করেছিলেন নাম দিয়েছিলেন 'ত্রুটি'।

ত্রিকোণমিতি[সম্পাদনা]

'ত্রিকোণমিতি'-তে সাইন, কোসাইন এসবের নানা ডিগ্রি কোণের প্রতিটির একটি নির্দিষ্ট মান থাকেে। এ সকল মানের জন্য একটি সারণি আছে।

এই সারনি তৈরির কাজটি করেছিলেন ভাস্কর। ভাস্কর ১ ডিগ্রি অন্তর অন্তর কোণের সাইন কোসাইন বের করেছিলেন।

পদার্থ বিজ্ঞান[সম্পাদনা]

তরলের পৃষ্ঠটান ধর্মে সম্পর্কে ভাস্কর আলোচনা করেছেন।

টীকা[সম্পাদনা]

  1. Pingree 1970, পৃঃ  299
  2. Mathematical Achievements of Pre-modern Indian Mathematicians by T.K Puttaswamy p.331
  3. ৩.০ ৩.১ ৩.২ ৩.৩ S. Balachandra Rao (July 13, 2014), "ನವ ಜನ್ಮಶತಾಬ್ದಿಯ ಗಣಿತರ್ಷಿ ಭಾಸ್ಕರಾಚಾರ್ಯ ‍", Vijayavani: 17 
  4. S. Balachandra Rao (July 13, 2014), "ನವ ಜನ್ಮಶತಾಬ್ದಿಯ ಗಣಿತರ್ಷಿ ಭಾಸ್ಕರಾಚಾರ್ಯ ‍", Vijayavani: 17
  5. Plofker 2009, p. 71.
  6. Mathematical Achievements of Pre-modern Indian Mathematicians von T.K Puttaswamy
  7. Goonatilake 1999, p. 134.
  8. Seal 1915, p. 80
উদ্ধৃতি ত্রুটি: <ref> tag with name "sbrao2" defined in <references> is not used in prior text.

তথ্যসুত্র[সম্পাদনা]

আরও পড়ুন[সম্পাদনা]

  • Plofker, Kim (2007)। "Mathematics in India"। The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook। Princeton University Press। আইএসবিএন 9780691114859 
  • W. W. Rouse Ball. A Short Account of the History of Mathematics, 4th Edition. Dover Publications, 1960.
  • George Gheverghese Joseph. The Crest of the Peacock: Non-European Roots of Mathematics, 2nd Edition. Penguin Books, 2000.
  • জন জে. ও'কনোর এবং এডমান্ড এফ. রবার্টসন। "দ্বিতীয় ভাস্কর"। ম্যাকটিউটর গণিতের ইতিহাস আর্কাইভUniversity of St Andrews, 2000.
  • Ian Pearce. Bhaskaracharya II at the MacTutor archive. St Andrews University, 2002.
  • টেমপ্লেট:DSB

বহিঃসংযোগ[সম্পাদনা]